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XV. On a Class of* Differential .Eguati'ons, including those which occur in Dyna-
mical Problems—Part II. By W. F. DonkiN, M.A., F.R.S., F.R.A.8., Savilian
Professor of Astronomy in the University of Oxford. '
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THE following paper forms the continuation and conclusion of one on the same
subject presented to the Royal Society last year, and printed in the Philosophical
Transactions for 1854. I have however put it, as far as possible, in such a form as
to be independently intelligible.

The fourth Section (the first of this Part) contains a recapitulation of some of the
most important results of the former Part, in the form of seven theorems, here enun-
ciated without demonstration.

In the fifth Section the method of the variation of elements is treated under that
aspect which belongs to it in connexion with the general subject. It is applied, by
way of example, to deduce the expressions for the variations of the elliptic elements
of a planet’s orbit from the results of art. 30 (Part 1.), on undisturbed elliptic mo-
tion; this example was chosen, partly because the resulting expressions are required
in a future section, and partly for the sake of incidentally calling attention to a fal-
lacy which has been, perbaps, often committed, and certainly seldom noticed. The
same method, under a slightly different and possibly new point of view, is applied, as
a second example, to the problem of the motion of a free simple pendulum, omitting
the effect of the earth’s rotation. I believe the methods of this paper might be advan-
tageously employed in the treatment of that general form of the problem of a free
pendalum which has been considered by Professor HansEN in his Prize Essay. Iwas
unwilling, however, to attempt what might bave turned out to be merely an uncon-
scious plagiarism, without having seen the Essay in question, of which I only suc-
ceeded in obtaining a copy on the day of writing this preface. As I now perceive
that the investigation would be quite independent, I hope to enter upon it at some
future time.

The sixth Section contains some general theorems concerning the transformation
of systems of differential equations of the form considered in this paper, by the sub-
stitution of new variables. The most important case consists in the transformation
from fixed to moving axes of coordinates, in dynamical problems. Some of the
results are, I think, interesting, and perhaps new.

The seventh and last Section contains an application of the preceding theorems, in

connexion with the variation of elements, to the transformation of the differential
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equations of the planetary theory. This investigation, if interesting at all, will pro-
bably be so to the mathematician rather than to the astronomer. I think, however,
that if the theories of physical astronomy were more frequently treated rigorously
and symmetrically, apart from any approximate integrations; and if, when the latter
are introduced, more care were taken to give a clear and exact view of the nature of
the reasoning employed, it might be possible to draw the attention and secure the
cooperation of a class of mathematicians who now may well be excused, if, after a
slight trial, they turn from the subject in disgust, and prefer to expatiate in those
beautiful fields of speculation which are offered to them by other branches of modern
geometry and analysis.

The contents of the two last Sections are more or less closely connected with the
subjects of various memoirs by other writers, especially Professor Hansen and the
Rev. B. Bronwin. T cannot pretend to that degree of acquaintance with them which
would enable me to give an exact statement of the amount of novelty to be found
in my own researches. I believe it is enough to justify me in offering them to the
Society ; beyond this I make no claim.

Oxford, Feb. 15, 1855.

SectioN IV.

49. The following theorems were demonstrated in the former part of this essay,
and are recapitulated here for convenience of reference. (As before, total differen-
tiation with respect to the independent variable # will, in general, be denoted by
accents, which will be used for no other purpose.)

Theorem I.—If X be a function of n variables x,, @,,...x,, and if y,, y,, ...y, be n
other variables connected with the former by the » equations

dX dX dX _
E:y“%:yg,...ﬂnzym e e e e e e (DO.)

then will the values of x,, ,,.... ,, expressed by means of these equations in terms

of ¥y, ....y,, be of the form
_dY _dY _dY
xl_%, .Z'z—d—y;, xn—@—n, Ce e e e e (51.)

and if p be any other quantity explicitly contained in X, then also

(the differentiation with respect to p being in each case performed only so far as p
- appears explicitly in the function).
The value of Y is given by the equation

Y=—X)+(x)y,+ (@)y+ ...+ (@)Y . . . . . . (53.)

where the brackets indicate that x, ...z, are supposed to be expressed in terms of
Y, ... Y, (arts. 2, 3.).
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Theorem 11.—Suppose the function X to contain explicitly, besides the = variables
Z,...2,, another variable #, and also » constants a,, a,,...a,; and in addition to the
equations (50.), let the following be assumed :

o =boey=be .. ()
where b,, ... b, are » other constants; so that, by virtue of the 2z equations (50.), (54.),
the 2n variables «,... 2, v,...y,, may be considered as functions of the 2r constants
@y,...a, b,...b,, and £. Then if from the equations (50.), (54.), and their total differ-
ential coefficients with respect to #, the 2n constants be eliminated, there will result
the following 2» simultaneous differential equations of the first order; viz.—

,_dZ ., dZ
mi-—_—';‘i’?;;, .yz_' _'dz, s e e e e e e e (55.)
where Z is a function of 2, ..., ¥,,... ¥, (which will in general also contain ¢ expli-
citly), and is given by the equation
dX

In this equation —; represents the partial differential coeflicient of X taken with

respect to ¢ so far as ¢ appears explicitly in the original expression for X in terms of
ZyeuiZpy @y ...a, and £; and the brackets indicate that a,,...a, are afterwards to be
expressed in terms of the variables by means of the equations (50.), (arts. 5, 6.)
Theorem I11.—Let the supposition that the 2» variables ,...,, ¥, ... y, are expressed
in terms of the 2n constants and ¢, be called Hypothesis I.; and the converse suppo-
sition that a,...a,, b,... b, are expressed in terms of the 2n variables and ¢, Hypothe-
sts II.; then will the following relations subsist :
d.Z’,____db] dw,-__daj 1
da;™dy? db; dy;
' (57.)

(In each of these equations the first member refers to Hyp. I., and the second to
Hyp. I1.; and since there is no connexion between the indices of the variables and
those of the constants, the case of i=j has no peculiarity.)
Theorem 1V.—Let the symbol [p, ¢] be an abbreviation for the expression
2(141 dg _ B éz)
\dy; dz;  dz; dy;

(where p, ¢ are any functions of the 2» variables, which may also contain any other
quantities explicitly ; and the differentiations are performed only so far as x,,&c.,y,,&c.
appear explicitly in p, ¢); then if a,,...a,, b,, ... b, be expressed (Hyp. IL.) in terms of
the 2n variables and ¢, the following equations subsist identically :

(@, b]=—[b; a;]=1, [a, b]=[a; a;]=[b;, b]=0 . . . (568))

282
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(¢ being different from j); and obviously in all cases

[p, g]=—1[g,p], and [ p, p]=0 (art. 9.).
Theorem V.—If u, v be either (1) any two functions whatever of the 2n constants
a,, &c., b,, &c., or (2) any two functions whatever of the 2» variables z,, &c., v,, &c.
(which may in either case also contain ¢ explicitly)*, then

w dv  du dv)
Ei{%.- 3’%—:}’—;‘; %}:z{% Sl 69)
(When u, v represent functions of the constants, the differential coefficients in the
first member of this equation refer to Hyp. IL.; and, when functions of the variables,
those in the second member refer to Hyp. 1.) (art. 10.).
Theorem VI.—Let ,, ... @, Y, ... Y, be 2n variables concerning which no supposi-
tion is made except that they are connected by n equations of the form

G=0,(T1y Bgy evve Ty Y15 Yoy oov Y) =+« o o o o o . (&)

(where the functions on the right are only subject to the condition that the n equa-

tions (a.) shall be algebraically sufficient to determine y,, ...y, in terms of @, ... x,, a,,
&c., and may contain explicitly any other quantities besides x,, &c., y,, &c.).

Then, if by means of the equations (a.) the » variables y,, ,, ... v, be expressed as

. . —1 ..
functions of «, x,, &c., a,, &c.; in order that the ﬁn@»l conditions
by _4y;
d.Z’j—d.Z'i
n(n—1)
2

may subsist identically, it is necessary and sufficient that each of the expres-

sions [a;, a;] vanish identicélly.
Theorem VI1.—Let Z be any function whatever of 2n variables «, ... z,, 9, ... y,, and
¢. If of the system of 2» simultaneous differential equations of the first order

dz dZ.

mi:%,yi_—ﬂ e ¢

there be given » integrals involving » arbitrary constants @,, a,, ... a,, so that each of
these constants may be expressed as a function of the variables x,, &c., 7, &c. (with

nn—1 . ., . .
( 3 ) conditions [a;, a;] =0 subsist identically, the remaining

or without ¢); then if the

n integrals may be found, as follows. By means of the n given integrals let the n
variables v, ...y, be expressed in terms of @), &c., a,, &c.; and let (Z) be what Z
becomes when y, ... y, are thus expressed. These values of y,, y,... y, and —(Z), will
be the partial differential coefficients with respect to x,, x,, ... x, and ¢, of one and the
same function ; call this function X, then, since its partial differential coefficients are

* It was inadvertently stated in art. 10, that «, v must no¢ contain # explicitly. But it is evident that no
such limitation is implied in the demonstration of the theorem. The preceding theorem is obviously a particular
case of this; namely, the case in which u=gaj, v=b;.



DIFFERENTIAL EQUATIONS OF DYNAMICS, ETC. 303

. . aX aX . .
all given <by the equations . =Y 'E'Z':_(Z))’ X may be found by simple inte-
gration, and is therefore to be considered a given function of z,, ... 2,, a,, ... a, and ¢.

The remaining » integrals are then given by the n equations
dX

da=bo

b, ... b, being n new arbitrary constants.

[On the relation between this theorem and the theories of Sir W. R. HamiLron
and Jacosr, see arts. 15-20.]

50. Other results established in the former part will be referred to as occasion may
require. To the theorems enunciated in the preceding article, the following may
now be added. .

Returning to the equations (50.), (54.), (55.), we may observe, that if, in the first
members of (55.), x,, y; be supposed expressed in terms of a,, &c., b,, &c. and ¢, then
du; dy;
e’ dt ,
coefficients of z, y; are obtained by differentiating with respect to ¢ as it appears
explicitly. We have therefore

dv, _dZ  dy,__  dZ

& dy A dw
where the first members refer to Hyp. 1., and the second to Hyp. II. But since the
equations (50.), (54.) involve a, b, exactly in the same way as they involve z, y, it is
obvious that the same reasoning which leads to the equations just written, would
lead, mutatis mutandis, to the following, which may be considered as an addition to
the system of equations (57.) (Theorem IIL.):

do;_d7Z  dbi_ _dZ

d T db; At dag

may be written instead of x, y;; since on this hypothesis the total differential

(60.)

In these equations, a;, b; in the first members are supposed to be expressed in terms
of the variables (Hyp. I1.), whilst in the second members «,, &c., y,, &c. are supposed

to be expressed in terms of the constants and ¢ (Hyp. 1.). As before, Z=—-%y but

in (60.) Z is differently expressed, being what the Z of (55.) becomes when «,, &c.,
Y,, &e. are expressed according to Hyp. L.

It is to be remembered that all consequences deduced from the form of the system
(50.), (54.) belong to the system of equations, obtained as in Theorem VII., which
express the solution of the differential equations (I.). Such a solution will be called,
as before, a normal solution; and the system of equations obtained by expressing
a,, &c., b,, &c. in terms of the variables and ¢, will be called a system of normal inte-
grals. (See art. 20, and the note to art. 29.)

51. Let a,, &c., b, &c. be called, as before, elements. If then ¢ be any function of
the elements, when the latter are expressed in terms of the variables and ¢
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(Hyp. I1.), ¢ becomes also a function of the same; and we have

de de da; | de db; de dZ  dc dZ '
= z(da oy e dt) 2(@7@ LAY 61

(see the last article). But, by Theorem V., this becomes

_...[cz],........-(62-)

It is worth observing that both this equation and (60.) might have heen obtained
. . . . d
indirectly as follows. Since ¢ is constant, we have ¢=0; that is, Zl_;‘l' [Z, c]=0 (see

(32.), art. 22.); this gives (62.), since [Z, ¢]=—[¢, Z], and again, by Theorem V., is
changed into (61.); and if, in the latter, we put successively c=a;, c=¥0;, we obtain
the system (60.).

SectioN V.—On the Variation of Elements.

52. The following general problem includes, I believe, all the cases which occur in
practice. Let P, ... P,, Q,, .... Q, be any functions whatever of the 2n variables
Xyy evo Ly Y1y . Y and £ It is required to express the 2n integrals of the system of
2n simultaneous differential equations of the first order

=P, yi=Q, . . . . . . . . . . (63)
in the same form as the integrals (supposed given) of the canonical system
__dZ , dZ
xi:zy_i’ yz= - d,?i, . . . . . . « . . . (I-)

by substituting functions of £ for the constant elements of the latter system.

Suppose a normal solution (see end of art. 50.) of the system (L.) to be employed.
The elements a;, b; represent the same functions of x,, &c., y,, &c. and ¢ as before, but
are now variable ; consequently we have

o da; da; , . da; , da; dal
G="g T2 {dxmf—l_dyyf} dt+2{ rm +Q’d_/}

with a similar expression for ;. But, by equations (57.) and (60.), these are imme-
diately transformed into the following :

4L [ dy  pd
“":‘d_bi"'zf{Qf F Pfd?l?}

) dZ dz; d,
b=z > {Qf o dZ]}J
where Z, Q;, P, x;, y; in the second members are supposed to be expressed (Hyp. I.)
in terms of the elements and #. Thus the system (63.) is transformed into a system
involving the new variables a;, b,, instead of the original variables x;, y,.
53. If, instead of employing a set of normal integrals of the pattern system (I.), we
take any complete set of integrals ¢, c,, ... ¢, then ¢,, &c. may be considered as

(E.)
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functions of a,, &c., and again, through them, of the variables. We have then
/ dz ’ dci ’
ci=%c—la,+...+%-lbl—l—...;
and if in this equation the values of ), &c. be introduced from the formula (E.) of
the last article, the following expression results :
'C;= {Z) ci} +E;(Q]{‘zfp Ci} _Pj{yja ci})
(in which the symbol {p, ¢} is used to denote
s {EZE_ dg _ dp dq|
“\dby day  day dby,
so that by (59.) (Theorem V.) we have {p, g}=—{[p, ¢]; but in {p, ¢} p and ¢ are
considered as functions of a,, &c., b,, &c., whilst in [p, ¢] they are considered as
functions of x,, &c., y,, &c.). Now, considering p, g as functions of ¢,, &c., and through
these, of a,, &c., we have (by reasoning exactly similar to that employed in deducing
equation (24.), art. 9.)
- dp dg __ dp dgq
(, y=2({e, o}(L S~ &
(the summation referring to all binary combinations of the indices «, 8). Hence we
have, putting g==c,

‘ d
{p,c,-}:Ea({ca,ci}d—i), C e L (64
and consequently the above expression for ¢; becomes ‘
; / da; dy;
d=1Z, cp 433t e} (QUE-R D)), . . L@

an equation which is easily seen to become identical with (E.), art. 52, when c,...c,,
represent a,...a,, b,...b,.

54. The simplest case is that in which the system of equations (63.), whose inte-
grals are sought, are of the canonical form ; that is, where
dW AU
Ey—i) Qi'— —d—xia
W being a given function of the variables (with or without #). In this case the
formula (E.) becomes

P=

_dZ_dW
b, db;
(65.)
b= %% W
T d[li ddi

whilst (F.) is easily found to be reducible, by the help of (64.), to either of the fol-
lowing forms :
c={Z, c}—{W,¢} . . « « . « . . . . . (66)

cgzia({ca, Ci}(%—{if:r ) e (.78
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If we put W=Z4Q, so that Q@ may be called the * disturbing function,” the above

formulae become

/ dQ )
ai—- Zb—) b dat . . . . . . . ° ° . o . (68-)

c;=2a<{c,-,ca}d~%). C e e e e e e e e (89)

On the first of these forms see the note to art. 38. With respect to the form (69.),
if we put for {c, c,} its equivalent —[c; c,], or [c, c;] (see Theorem V. art. 49.), we
obtain the well-known expression

) aQ
C;= Ea( [Cm ci] EE) °

The difference between this last form and (69.) consists in this; that in the latter the
coefficients [c,, ¢;] are obtained from the expressions for c¢,, ¢, &c. in terms of the
variables ; whereas in (69.) the coefficients {c;, c¢,} are similarly obtained from the
expressions for c,, &c. in terms of the normal elements a,, &c., b,, &c.* ; and when a
normal solution of the undisturbed problem has been obtained, the latter process will
generally be found much more convenient than the former, since the elements c,, &c.
will usually be much simpler functions of the normal elements than of the variables.

55, In illustration of this, it will be worth while to deduce the expressions for the
variations of the ordinary elliptic elements of a planet’s orbit from those of the normal
elements given in art. 30.

Let a and e be the semiaxis major and excentricity, s the inclination of the orbit to
a fixed ecliptic, » the longitude of the node, = the longitude of the perihelion, n¢-(¢)
the mean longitude of the planet; longitudes being reckoned in the plane of the
ecliptic (from a fixed origin) as far as the node, and then on the plane of the orbit. As

usual, n stands for Sg Also let nt-(¢) =y ndt-¢, so that ¢'=(¢)' .
0

If, then, we call the six normal elements «,, w,, s, B,, 3, B We have (see art. 30.)

my w— (e
“1——%" BI:—-—n( ))
“2=m\/(*°a(l_e2)9 Be=w—y,
“s=m\/‘wa(l—e“).cos IR Ba=v;

from which, conversely,
e
a 2] @ =[5+,
Q0,05
1—e? ——‘7;&‘3];@?3 y =Baa
: (2a))2
cos a3 (£)=B2+ﬁa"" ik 61

de; dey  de; de,
* Lo Cu =B 2 e ),
{ei ca} ’(db da; da; db,-)
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From these expressions the values of {«, e}, {a, ¢}, &c. are found with the greatest
simplicity, and the results are

mu{a, (6)}=2na®>, mu{(s), e} =M£—E_§(l-—'\/l—-ez),

_naV1—é
-—-~———’

mu{w®, e} m@{(e), 1} = 4/1 tan

2

mps{@; ¢} —4/1 tan 2 myn{, }.--.suniz/al—e2

the rest all vanishing. Hence, observing that if R be taken in its usual signification
we have A =—R, we obtain*

dR
a =2na® ==
# i@’

' _—naV1=2[dR =
e =‘“@—e—“i{3;+(1 \/1 )d }

' 2dR na /1 — ¢? —— dR na 1 dR
u(e) =—2ma* (1 =/ 1=&) o= tan >

e 2

) __~—ma [ 1 4R, . .(dR 4R
W= e () b
) . ma dR
B =iVl &’

' V1—2dR L 3 dR)
e .-na{ +4/1 - tan df

. . . dR
in which we may, as usual, put ¢ for (¢), provided that in forming the term ——, nf be

exempt from differentiation with respect to a.
56. A comparison of the above process with that by which the corresponding

* If we consider R as a function of p, ¢ instead of 4, v, where p=tan ¢ cosv, g=tan:sin v, we find

dR ( dR dR
_semcosv +smv )

di dg
%E: tan s (cos y %]&—sm y lfiR)
q P
and consequently
__—na(sec)®f - dR (dR dR)
tp= Vi {Se l—d—-+tan cosv e )+ =
1__na(sect)? dR v . (dR d_R_)
M= T=a {sec by —tangsin "(d(s) taw) [

The formulze will then agree with those of the Mécanique Céleste (Supplement to vol. iii. p. 360, ed. 1844), if
we allow for the different mode of measuring longitudes, and neglect, as Larrace does, terms of ‘phe second

order with respect to 1 and %’ (Larrack uses R with the opposite sign.) Those in the text agree (allowing

for notation) with the expressions given by Professor Hansex, Astr, Nachr. No. 166, art. 3, equations (2).
MDCCCLV. 2T
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expressions are obtained by PoNTEcourant*, will show the convenience of using the
coefficients {c, ¢;} instead of [c, ¢;] (in PoNTEcouLaNT's notation (¢, ¢,)).

[It will be observed that the formulae for (¢)', @, ¢ at the end of the last article,
do not agree with those of PonTEcourant (p. 330) for the variations of the corre-
sponding quantities ¢, , . The reason of this is as follows:—In PoNTEcouLANT'S
notation ¢ expresses the same as: in this paper, and « the same as». But » (the
longitude of the perihelion) is not the same as = ; the former being measured entirely
in the plane of the orbit from a radius vector, fived in that plane+-, and assumed as
the origin of longitudes. Consequently s, in PoNtécouLant (which we will call ¢, for
distinction), is not the same as (¢) in the'present paper. In fact, if we equate the
expressions for the mean anomaly in the two notations, we have

g—o=/(¢) —=;
also it is evident that if we put 3 for the angle between the node and the origin from
which « is measured, we have d3= — cos«dy, and w=y+4 34w, so-that

de=dw-+(1—cos)db.

If then it were allowable to consider R as capable of being expressed as a function of
» and ¢, instead of = and (¢), and if we represented by (R) the expression for R so
transformed, we should have

dR dR d(R) .
Im dw—l-g(:)- d(e)+&c.=—f1—-) dw—l—t%@dsl—l—&c.;

o El

and if, in the two first terms, we put for de and d(z) the values do=dw+ (1 —cos)dy,
d(¢)=de,~ (1 —cos ¢)dv, and compare the two expressions, we find

dR_dR) IR _d(R)

de ™ do’ d(e) ™ de, ’

dR dR  dR\ d(R)

| 7;+(1——cos;)<gé—)+d—5>_ ot
These relations, together with the equation
@ =da'+(1—cos )/,

are easily seen to render the expressions at the end of art. 55 identical with those of
PontEcourant; in fact, it is by an equivalent transformation that the latter are
finally obtained by that author from the correct expressions in p. 328. But it is to
be observed that this proceeding is founded upon a false assumption; for it is im-
possible to express R as a function of a, e, 4, 1, ¢, @, as is obvious from the considera-
tion that R, in its original form, is not a function of (¢)—w= merely, but also of (¢) ;
whilst (¢) is not expressible as a function of the new elements, as is shown by the equa-
tion d(¢) =de,+- (1 —coss)dv}. It would be out of place to enter further into this sub-

* Théorie Anal. du Systeéme du Monde, tome i. pp. 316-330.
4 On the meaning of this expression, see below, art. 73.
{ It would be a work of some trouble to trace accurately the process by which Larrace arrives at the for-
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ject here, especially as some of the most important principles 1nvolved in it have
been discussed elsewhere *. See also Appendix B.]

57. Returning to the expression (69.), art. 54, it may be observed that the coefii-
cients {c, ¢;} are to be expressed in terms of c,, ¢,, &c., and this involves no difficulty
when each of the two sets of elements ¢,, &c., a,, &c. can be expressed in terms of the
other explicitly, as was the case in the example just discussed. Suppose, however,
that the normal set a,, &c., b,, &c. are given in terms of the set ¢,, &c., but that it is
impracticable or inconvenient to obtain the converse equations expressing the latter
in terms of the former. In this case we mnay proceed as follows.

Adopting the notation of art. 1, and putmwf, g for any two of the set ¢, ¢,, &c.,
we have

4d£,9) .

{‘f; g}zzzdlb a.) ’
suppose this equation written at length, and then, after multiplying by ‘X)” f;’))
each side be summed with respect to all binary combinations f, g. The result is (see

art. 1, equation (4.)),

let

<bf’“w {f:o}> R VAUD)]

(the summation referring to the combinations f, g). Again, if the former equation

d(p; 9)

d(f )’ where p, ¢ represent any two of the normal elements, a,, &c.

be multiplied by

b,, &c., except a conjugate pair, and the sum be taken as before, we have

(d(i’:‘]) i, }) =0. N VA |

The two formulae (70.), (71.) give n(2rn—1) linear equations for determining the
n(2n—1) unknown quantities { f; g}; the coeflicients of the latter being all given
functions of ¢,, &c. DBut such cases will hardly occur in practice. (With respect to
the form of the above system of linear equations, it is easy to show that the complete
determinant of the coefficients is =1.) |

58. The integration of the formulee (65.), art. 53, would give the means of ex-
pressing the solution of the system

_AW . _dW

mul alluded to in a preceding note, as the various steps of it are to be found in different places, the notation
is somewhat inconsistent, and the results do no¢ profess to be rigorous. My impression is, however, that
Larrace nowhere commits the fallacy of assuming (for example) that R is a function of 7, v, 2, or 7, v, s (see
vol. i. p. 295), where v is the angle described by the radius vector on the varying plane of the orbit.

* See JacoBl’s two letters to Professor Haonsen in CrerLe’s Journal, vol. xlii.

d(u, v) as an abbreviation for dudy dudy
d(2,y) dz dy dy do

2T2

+ i. ¢. using
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in the form of a normal solution of any other similar system

, dL dZ
wi:tTy_i’ yiz—z’;“,
which may be chosen as the pattern.

In the most usual examples the function to be chosen for Z is naturally suggested
by the circumstance, that W presents itself under the form of the sum of two func-
tions Z4-(2, of which the former, taken alone, gives an integrable system. But this
is not necessarily the case; and it is worth while to observe that the formulee (65.)
take a simple and remarkable form whatever Z may be, provided that it be a func-
tion not containing t explicitly. For then, assuming the ““integral of vis viva,” Z=#,
as one of the normal integrals of the pattern system *, the element conjugate to 4 is
7 (the constant added to ¢) ; and observing that Z,.in (65.), being expressed in terms

of the elements, reduces itself simply to &, we shall have ‘%:l, whilst the differential

coefficients of Z with respect to all the other elements vanish; so that, if we put
... 0, , b, ...b,_, for the remaining elements, the system (65.) takes the following

form :—
h’: —%‘yp ‘7"—- —1 —l—dg
(72.)
dwW dw

;= — Eg_’ bi=%;

J J

This, in dynamics, gives the process to be used in the following problem : “ 7o express
the solution of any dynamical problem in the form of the solution of any other (involving
the same number of variables) in which the principle of vis viva subsists.”

59. As an example of the above process we may apply it to determine the motion
of a simple free pendulum (not taking into account the earth’s rotation).

Let ! be the length of the pendulum, and let the mass of the material point m
placed at its extremity be represented by unity. Also let x, y, = be the rectangular
coordinates of m, the origin being at the position of rest of m, and the axis of
directed vertically upwards. The equation to the sphere described by m is

24yt 2*—20x=0,
and the force-function U is — gz.
Hence if we take, as the two independent coordinates, the radius vector ¢ of the

projection of m on the plane of 2y, and the angle 4 between ¢ and the axis of », we
shall have for the differential equations of motion,

_dW ﬂ,__dW
&= du’ Ty
(A)
J— |-
W= W W
dp d

* See art. 19 (where 4; in equation (29.) is a misprint for 5;).
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where u, v, are the variables conjugate respectively tog, 4,and defined by the equations

_dT 4T,
Td A

and W is T—U expressed in terms of ¢, 4, u, v.

u v

Now z=¢ cos d, y=¢sin, z=Il—a/1'—¢*; hence
o 1 1] &

1(=§(ﬂ72+y'2+%'2)> =§{ZQ_::E2€!2+§29!2}’

from which the following expression for W is easily obtained :

ZQ___Q 2 JEE—
»W___%( Foe ) el P (W)

Now let us take as a model for the solution of the above system, a set of normal
integrals (in polar coordinates) of the system

' 4nPe=0, y'4+ny=0,. . . . . . . . (B)

. 1 . .
where n2:'% In this system we have U=— gn’%"; and proceeding exactly as in

art. 27, we obtain the following results: the two integrals of vis viva and of areas are

h:-;(u2+’;—§+n2e2)}, @

c=v
these are to be solved for u, v; and then V is to be obtained from the equation
dV =ude+vdd. 'This gives

V= cé—l—fdg{?h—ﬂf - ;1; :

J
and the remaining integrals are given by the equations
dv_ av_
—d—ﬁ‘ —t-‘-?’, —‘—i—c- —_‘m',

7 and = being the elements conjugate respectively to 4 and ¢. Performing the dif-
ferentiations first, and taking the integrals in the second term so as to vanish with

1

the expression {2h—n2g2——§;}2 (see Appendix A.), we find easily the final equations

W@ =h~+/ I —n’c.cos 2n(t+7)) i)
- e e ii.
e =h—x/F—n’c*.cos 2(0—w) J
in which = is the angle between the axis of x and a (distant) apse, and —= is the
time of passage through that apse. The four equations (i.), (ii.) comprise a com-
plete normal solution of the equations (B.). The last is the polar equation to the
elliptic orbit; and if we call @, b the semiaxes of the ellipse, we have

a®+ b2
5"

-~

c=nab, h=n?
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60. The solution of the system (A.) of the last article will now be expressed by the
same equations (i.), (ii.), if the elements A, c, 7, @ be variables defined by the system
(see art. 58.)

dW
klz-E;’ 1+
(=W i _dW
T de’ e’

where W is to be obtained by substituting in the expression (W.), art. 59, the
values of ¢, 4, %, v in terms of the elements and ¢, derived from equations (i.), (ii.).
The result of this substitution is

2

W= -}—412 47;219 ldh‘ n’c*.cos 2n(t+7)

+,' ng * cos 4n(t+7-)+n“‘l(l V=g,
in which the value of ¢* in the last term must be understood to be substituted from
the first of equations (ii.). If we call ¢ the angle between the pendulum and the
vertical, we shall have evidently

wl(l—~/P—¢) =nl’(1— cos 9),

and the differential coefficient of this term with respect to any constant % involved
A7),
o3¢ dk

sions for the variations of the elements :

in the value of ¢ will be

Observing this, we obtain the following expres-

h'=—n(sec p—1)3/ /z”—n2c2.sin 2n(t+7)+ ke—fecg sin 4n(t+7)

Q-}- (b(‘C(P 1)<l-i—~//2 wcos2n(t—|-7')> 57 08 dn(t+7)

w;: (sec@ 1)Vh22.,, cosQn(t+f)———oos4n(t+«r)

The third of these equations gives ab=constant ; hence, by means of the equations
at the end of art. 59, the following expressions are easilv deduced :
d o

Z{=""3—n{ (sec@—-l)sm2n(t+f)+ lg sm4n t+7')}

r’_%—g—(— 14 cos 4n(t+7-)) 2(sec o—1) (l +Z;E‘2‘Z cos 2"(t+7))

1— cosdn(t+t cos 2n(t+1=
w’:nub{—*————gp—g———l—(sec@—-l) ag__(bg-)}.

These equations are rigorous, and in general not easier to integrate than the original
system of which they are a transformation; but they may be integrated approxi-
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mately on particular hypotheses. Fuor instance, if the pendulum never deviates much

2 2
from the vertical, % is always small, and sec p—1= ¢ nearly ; introducing this value,

2/
and substituting for ¢*, we have for the non-periodic parts of the above expressions
d o
'a—‘: -—Z‘_—'._

r__ a®+0% - ,___3 nab
TTTHer’ "TsE

Hence the axes of the mean ellipse are constant; also if T be the time of describing

the ellipse, we shall have approximately T'= ?77” f_].l'?i’ whence it follows that the mo-

. . . . . 3nab 2% 3ab
tion of the apse during this period will be B or -8—25-27 nearly.

This agrees with the statement of the Astronomer Royal*. The above approxima-
tions would cease to be sufficiently accurate if b were very nearly equal to a, or the
motion very nearly circular; but they apply to any other case, and in particular to
that in which b is very small, or the motion nearly rectilinear. In the case of nearly
circular motion, it would be necessary to develope sec ¢ in a series of powers of
a>—b, and the results would be applicable whether ¢ were small or not. But I shall
not pursue this subject further here.

SectioN VI.—On the Transformation of Variables.

61. The method of the variation of elements, theoretically considered, consists
merely in a transformation of variables of a particular kind; that kind namely,
which leads to a new system of differential equations belonging to the same general
class as the original system. But practically, the choice of variables is determined
by the well-known considerations from which the method derives its name.

It is the object of the present section to consider the general class of trans-
formations of which the method in question is a particular, and not the only useful
case.

62. Definition Qf Normal Transformations.

Let £, %, ... &, 7, 5, ... 7, be new variables connected with the original variables
x,, &c. y,, &c. by 2n equations (which may also involve ¢ explicitly), such that each
variable of either set may be considered as a function of the variables of the other
set (with or without #). Let P be any function of &, &, ... £, Y1, ¥s ... ¥, and ¢; then
if the equations connecting the old and new variables can be put in the form

dP ap o
@:.mi, p7ak R (73.)
I propose to call the transformation normal.

* Proceedings of the Royal Astronomical Society, vol. xi. p. 160.
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[It follows from Theorem I. art. 49, that the 'system (73.) is equivalent to each of
the following :

Q4
ZZE"‘yi) jg;z—”ia

in which Q=—P-+32(24,), and is expressed in terms of z,, ... @,, &, ... &,; or
dR y dR

E;hf:::i, J‘,;:= —&;s
in which R=—P+2,(§#,), and is expressed in terms of 4y, ... ¥, 7,5 ... 7,3 or lastly,
ds - dS
21;1,—22" ‘7',,;;=yi7
in which S=—P+3,(z,y,+%7,), and is expressed in terms of x,, ... &y, 71, «ov 7,
Any one of these forms might be used; but I shall employ the form (73) for
reasons of convenience. ]

63. Inasmuch as the equations (73.) of the last article are of the same general
form as the system (54.), art. 49, all the conclusions deduced from that form will
subsist, mutatis mutandis ; so that we may apply the Theorems (IIL.), (IIL), (IV.), (V.),
art. 49, by merely changing X into P, and

Liy oor Tyy Yisoee Yus Qis wev Ayy by, ... by, respectively into
%15 aee s‘gm Ny coe Wy Yiy voe Yuy Lyy o0 Ty}

dE, d’?z*

observing that instead of &), ¥; we must now write == T

We thus obtain the fol-

lowing relations :
dEi_ A
dzdn,%—zg"-'-j----(%)

where ¥ is a function of &, &c., 7,, &c. and ¢, defined by the equation

__—(”%’-,...,........(75.)

the brackets indicating that the expressions for y,, ... Y in terms of the new variables
dP
g, &e., 7, &c., are to be substltuted in —- after the differentiation with respect to t;

which is performed so far as ¢ appears exphcxtly‘;n the original expression for P as a
function of & ... &, %, ... y, and £.  (See Theorem I1.)
We have also the system
d_ oy dE: _dy
Ay dn dﬂ“j—dml
I oy dy__dy[
dyjmzi;'—,-’ a’xj_ dE,

C e .. (6

* For in the original theorems ; is the same thing as the differential coefficient of #; taken with respect to £,
as ¢ appears explicitly in the expression for #; in terms of ay, &c., b;, &c. and ¢; the analogous quantity in the
present case is therefore the differential coefficient of £; taken with respect to ¢, as ¢ appears explicitly in the
expression for £; in terms of 2;, &c., ¥, &c. and #. But this must not now be denoted by £;, inasmuch as
z,, &c., y;, &c. are themselves afterwards to be considered as functions of z.
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(see Theorem IIL.). And if p, ¢ be any two functions of the variables (with or with-
out ¢), then ' ‘ ' '
dp dg dp dg dp dg dp dg
(@ a—in i) =2 &) - - @)
where p and ¢ in the first member are supposed to be expressed in terms of z,, &c.,
y,, &c., and, in the second, in terms of &, &c., 7, &c. In other words, the value of
[, q] is the same, whether it be obtained from the expressions for p, g in terms of
the original variables, or by an analogous process from their expressions in terms
of the new.
Particular cases of (77.) are the relations

By n]=—1, [&&]=[mn]=[5:4]=0. . . . . . . (78)
(See Theorems IV., V.)

64. The relations (74.), (76.), (77.), (78.) of the last article depend solely upon the
form of the equations (73.), art. 62, which connect the new variables with the old ;
and are independent of any supposition as to the equations which may determine
either set of variables as functions of £. Let us now, however, introduce the suppo-
sition that the original variables x,, ... z,, y,, ... ¥, are determined as functions of ¢ by
the system of differential equations, |

(__dZ _dZ
= %y y, dxi . . o . . . . . . . N (I.)

The relations just established enable us immediately to transform this system into
another involving the new variables instead of the old ; for we have

'__dEz dE, ) dE, ;
Ei—-dt +3; w +dyyj)
dg; _dV¥ ; .
now ?lgt'_d—n,- (see (74.), art. 63);

and if in the remaining term we substitute for a;, y; their values from (I.), and for

%, %i their values ¥, —%%, it becomes

du; dy; d g
dZ dx; , dZ dg/]>
N\dw; dn; ' dy; dy;

dZ
which is equivalent to - " if Z be supposed expressed in terms of the new variables.

awv dZ

We have then E=—— 42
iy dn
and, exactly in the same way,
L - d\I’__dZ.
A

This result may be stated in the form of the following Theorem VIII*. If the system

* This theorem, in its general form, is, to the best of my knowledge, new. But that case of it in which P
does not contain ¢ explicitly has already been proved in a different way by M. Dessoves, who has, by means
MDCCCLV. 2vu
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of differential equations (I.) be transformed by the introduction of new variables
£, ... %, 7, ...7,, connected with the original variables «,, ... «,, ¥1, ... ¥,, by the equa-

tions %Wf’ %=”i9 where P is any function of £, ... &, ¥, ... ¥,, Which may also con-
tain ¢ explicitly, then the transformed equations are
gd® g% g

N = &
in which @ is defined by the equation

., dP
(D—Z'——%)

and is to be expressed in terms of the new variables. (The substitution of the new

. . dP . _r
variables in — is to be made gfter the differentiation. See art. 63.).

Corollary—If P do not contain ¢ explicitly, ’%zo and ®=Z; so that in this case

the transformation is effected merely by expressing Z in terms of the new variables.
65. It follows from (77.), art 63, that if £, g be any two integrals of the system (I.),
the value of [ f; g] is the same whether it be derived from these integrals in their
original form, or similarly obtained from the same integrals after transformation by
the introduction of the new variables. And consequently if n integrals a,, a,, ... a, of

1))

n(n

the original system be given, which satisfy the conditions [a, a]=0, they will

2
continue, qfter a normal transformation, to satisfy the analogous conditions, so that the
method of finding the remaining integrals given in Theorem VII. art. 49, will also
continue to be applicable. We had an instance of this in the case of the problem of
central forces (art. 27.), where the above conditions were found to subsist after the
transformation from rectangular to polar coordinates. (It will be shown presently
that every transformation of coordinates is a normal transformation.)

66. It was shown in Part I. (art. 18.), that if W be any function of «,, z,, ... x,,
)5 Ty, ... &, (Which may also contain ¢ explicitly), the system of n differential equa-

tions of the second order
dW\!'
():‘i"_" e e (s0)

dh'l';‘ d.‘l'i

may be changed into a system of 2» equations of the first order of the form (I.),

of it, deduced Jacosr’s form of the method of the Variation of Elements (namely, the equations (68.), art. 54),
from the similar form of Lacrawce, in which the elements are the initial values of the variables. It will appear
in the sequel that the extension to the case in which P may contain 7, is of importance. If the expression were
not already appropriated, I should have proposed definitively to call P the *“ modulus of transformation;” and I
shall use this term provisionally in the present paper, not being able to suggest a tolerable substitute. After all,
as the word *“modulus ” itself is used without confusion in very different senses according to the subject matter,
there is, perhaps, no reason why a similar liberty should not be allowed in the use of the proposed expression.
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art. 64, by putting y,-:%Y, and taking Z a function of x,, &c., y,, &c. and ¢, defined
by the equation Z==W+Z(xy,),
in which ), ... 2, are to be expressed in terms of y,, &c., 2, &c.*.

Conversely, a system of the form (I.) being given, it may be changed into a system
of the form (80.) as follows: by means of the equations mﬁ-:%z—_, let y,, ...y, be ex-

pressed in terms of &}, &c., 2, &c. ; it follows from Theorem I. (art. 49.) that we shall
dW

have R T )
dZ _  dW

where W is a function of x,, &c., x,, &c. defined by equation
W=—Z+3,(2.y),
in which y,, ...y, are to be expressed in terms of ), &c., x,, &c. The n equations

;=—@ are then changed by (a.) and (b.) into the form (80.).
Y p ged by

Z5

On the Transformation of Coordinates.

67. It has been seen in the preceding article, that we can always change the system
of 2n equations of the first order of the form (I.), art. 64, into a system of n equa-
tions of the second order of the form (80.). In this latter form the equations of
dynamics naturally present themselves.

Now in the case of the dynamical equations, x,, «,, ..., are the independent
coordinates of the system (the word coordinates being taken in its most general sense),
and when the equations are to be changed into the form (I.), the additional variables

5 . dW . . .
Y1, - Y, are defined by the equations @ =Y In this case a transformation of coordi-

nates, in the most general sense, consists in taking n new variables &, &, ...£,, con-
nected with the original coordinates ,, ...z, by n equations, which may also involve #
explicitly. It is a well-known theorem, that the transformation of the equations (80.)
is effected merely by expressing W in terms of the new coordinates £, ...§,, and their
differential coefficients £, ...%,, instead of the old ; so that the new equations are
dW\' dW

the proof of this theorem does not depend upon the form of the function W; and we
know also (see arts. 18 & 66.), that whatever be the form of W, these new equa-
tions may be again transformed to a system of the form (L), by taking » additional

* This theorem is a generalization of Sir W. R. Hamirron’s transformation of the Dynamical Equations,
See Part I. art. 18.

2U2
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variables #,, ...,, defined by the. equations

dW
W=
b

(It is to be observed that this last transformation is not, in general, equivalent
to expressing the original Z in terms of the new variables; for the original Z
is —W43(zy,) (art. 66.), and the analogous expression derived from (81.) is
—W-3(§ ), which is not, in general, equivalent to the former. It will be seen
presently that the two expressions are equivalent when the equations connecting
2y... 7, with &, ...&, do not involve ¢ explicitly.]

68. Following the analogy of the dynamical equations, I shall adopt the following
as the :

Definition of a transformation of coordinates.

The original equations (L), art. 64, having been changed into the form (80.), art. 66,
let &, &, ..., be n new variables connected with the n variables «,, «,, ..., by n equa-
tions, which may also involve ¢ explicitly; and let #,, #,,...7, be n other new variables

defined by the equations %?_.’: n,(where W has been expressed in terms of £, &c., £, &c.).

By means of the 2n assumed relations, the 2r original variables x,, ... x,, y,,...y, can
be expressed as functions of the 2n new variables £,...%, #,,...7,. Let this substi-
tution be called a “ ¢ransformation of coordinates.”

It has been seen in the preceding article that the original equations (I.) are changed
by a transformation of coordinates into a system of the same form, which however
cannot in general be obtained by merely expressing Z in terms of the new variables.
But we are not at liberty to assume (and it is not generally true) that a change of
the system (I.) into another of the same form is a normal transformation (art. 62.). It
has already been stated, however (end of art. 65.), that this is true in the present case;
a proposition which I proceed to establish.

69. Every transformation of coordinates is a normal transformation.

To prove this theorem, we have to show that every transformation of the kind
described in the last article is also of the kind defined in art. 62; in other words,
that it is possible to assign a function P, of £,,... £, yl; ...y, (with or without #), such
that the given relations between z,, &c., £, &c., which define the transformation of
coordinates, shall be equivalent to the system of equations

dap dp
'le;:xi, ;i-é-;:”i.
Take ' P=(m,)y,+(x2)_y2+...+(x,,)yv,, Coe e oo oL (82)

(the brackets indicating that z,,...z, are to be expressed in terms of ,,...%,; so that
P is a function of &,...£, y,,...¥,, with or without ¢ according as the equations con-
necting ,,... x, with &, ...£, do or do not contain ¢ explicitly). Then P is the func-
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' . dp

tion required. For we have, at once, Gy = also
dP (1’1) (“'e)

dE _ l dE + 2

x,,)

St

. . aw
now the definition of 7, is =g where

W=—(2)+2y,+2y.+ ...+ .y,
(expressed in terms of £, ... %, &,...&, (art. 66.)) ; hence, putting Z (without brackets)
for the original form of Z in terms of x,, &e.,y,, &c., and observing that (Z) becomes
a function of £, &c., only through y,, &c., we have

dW_ dZ dy, dZ dy, dZ dy,
dg, — d.% g, dy, dE, T dy, dE

Y A ,,"7-’"

dz dz dx’n
dz
The two first lines of this expression vamsh by virtue of the equations x;= =g and
since (@)

= B By | Ly

da; ('Z'J)
we have f dE

so that we have, finally,
AW d(z)) d(z,),
= dE' = df + Y, + + Yn dE

which is evidently equivalent (see the expression (82.)) to
P
=
the proposition in question is thus established, and may be enunciated as fol-
lows :—
70. Theorem IX.— Every transformation of coordinates is a normal transformation,
of which the modulus* P is a function of &, ...%,, y,, ...y, (with or without t) given by

the equation P= ()94 @)yst ..+ @)y
(the brackets indicating that x,,...x, are to be expressed in terms of £,...£,). (See
arts. 62, 68.)

This theorem will be made more intelligible by applying it to a very simple
example. ’

Let it be proposed, then, to transform from rectangular to polar coordinates the
differential equations of any dynamical problem referring to the motion of a single
material point whose mass is m. Let x, y, z be the rectangular coordinates of m,

* See note on Theorem VIII. art. 64.
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and u, v, w the variables conjugate to them ; so that, putting T=%m(x""-|’-y’2+z’2), we

dT 1 . . dZ

have u=--, &c.; whence T=2—772(u"‘+ v*+w?), and the equations of motion are X""—‘%’
dZ 1 . . . . .

u'=——, &c., where Z=g_(v’+v*+w")—U, and U is a given function of x, y, z, with

or without .
Now let r, 4, ¢ be polar coordinates of P, so that

x=rsindcosp, y=rsindsinp, z=rcosé.
Let u, v, w be the variables conjugate to r, é, . Then the ordinary process of trans-
formation would be as follows :—

(1) to express X, ¥, z’ in terms of r, 4, ¢, ', ¢, ¢, and thus transform T into a
function of the latter quantities ;
(2) to define u, v, w by the equations
dT dT dT
u—_—gpy ’U=W: w:;la:

and by means of these relations to express #, ¢, ¢ in terms of u, v, w, r, 0, ¢, so
that %', y', z', and therefore, finally, T and Z, might be expressed as functions of
the six new variables.

Instead of this, let us adopt the method indicated by the theorem at the beginning
of this article.
We have then, for the modulus of transformation,

P=(x)u+(y)v+(z)w,
in which x,y,z are to be expressed in terms of r, 4, ¢; so that the proper form of P is

P=ur sin 4 cos ¢+ vr sin d sin o+ wr cos 4,

and the equations (corresponding to m:j—; (art. 69.)) which define the new variables

u, v, w, are 4P _qp P
U—dra v—'Eé" ’I,D—-—d@'

These give u=sin d(u cos ¢} v sin ¢)-+w cos 4,
v=r cos d(u cos ¢+ v sin ) —rw sin 4,
w=—7sind(u sin p— v cos ¢),

from which the values of u, v, w are easily obtained in terms of the six new variables.
But in ovder to effect the transformation of T, we have only to square each side of
these equations, and add them, after dividing the second by »* and the third by

(rsin 0)*; we thus obtain
,wQ

v?
UV w=wttEt g
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and the transformed equations of motion are therefore

mr'=wu, m'=vr=*, me'=w(rsind)>,
. d
mu =r=3(v>4w’(sin 0) %) +m7I;J >

: . dU dU
mv'=(r sin 0)~°w® cos d+m - w’=—t—5-

The preceding process is not, of course, given for the sake of the result, which may
easily be verified directly, but in order to illustrate the meaning of the theorem on
which it depends. It is hardly necessary to add, that if the problem involved the
independent rectangular coordinates of any number of material points, the trans-
formation to polar coordinates would be effected in the same way, by merely adding
to P analogous terms for each point.

71. Before proceeding further there is an important remark to be made.

It has been hitherto assumed that the modulus of transformation P was a function
of no other quantities than the 2»n variables £,...£,, v,,...y, and ¢£. But if every step
of the demonstrations of the theorems of transformation which have been given (art.
62, &c.) be examined, it will be seen that they continue to hold good in the following
more general form.

Take P=f(&, & oo by Yis Yas oo Yus Ps @5 s eeis £),
where p, ¢, r, ... are any functions of any or all the variables, old and new, with or
without . _
Let the equations connecting the old and new variables be, as before,
dp ap
B =T Mo o - e e e e (83.)
with the condition that p,q,r, ... are exempt from differentiation in forming these equa-
tions.
Then take ¥=—("2), with the following signification; (1) “ denotes th
en take ¥= ) g sig 3 (1) -5 denotes the
differential coefficient of P with respect to Z, so far as ¢ is contained explicitly, and
also through the variables in p, ¢, r, ... ; that is to say,
dB)_dP dP ,
At T dt +dp +d_q g+
(where p'= dt+ 2, 4+&c. &c., but this substitution is not fo be made at this stage) ;

(2) (Tt) denotes the result of substituting in the above expression the values of
d(P)

Y15 oo- Yo in terms of &,...8,, 7y ..y P,y , 7. from (83.), so far as == contains y,,...y;
explicitly (i. e. not involved in p, g, r, ...). '

Lastly, take O=(Z)+Y,
where (Z) denotes the result of substituting in Z the values of the old variables as
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given in terms of &, ... 7, ... p, q, 7, ... from (82.). We shall then have

_dd 4P "
éi—— 'Jn—i) 7]5-— EE:’ . . . . . . . . . (84-)

where @ is in general a function of

! !
Ely e By My eee My Py @5 T e P ¢, 7 oo and £

and the differentiations with respect to £, » are performed only so far as those vari-
ables appear explicitly in ®. But after these differentiations, we may introduce the
actual values of p, ... p, ... in terms of the variables and their differential coefficients.
It is obvious that the original variables will not, in general, have been eliminated
from the system (84.) ; but of course the elimination may be afterwards completed *.
Similar considerations apply to that particular case of transformation which we have
called a transformation of coordinates (art. 68.). We have then

P=(x)y,+ ... +(x.)Y.

and the relations connecting x, ... z, with £, ... £,, may contain p, p, r, ...; so that
(x,), &e. are functions of p, ¢, r, ... as well as of &, ... &,

We might have deduced the preceding conclusions from the following simple con-
sideration. Since p, ¢, 7, ... are actually functions of ¢, though wnknown functions,
we may imagine them to be known, and to be expressed explicitly in terms of #; and
then the case resolves itself into that of art. 62, &c., so far as the demonstration is
concerned. But as a doubt might possibly have arisen whether any fallacy was
involved in the circumstance that p, ¢, r, ... involve (when supposed to be expressed
in terms of ¢) the arbitrary constants of the problem itself, it seemed best to refer to
the oi-iginal reasoning ; the most important part of which is that contained (mutatis
mutandis) in art. 6. (For the “ mutanda” see the beginning of art. 63.) It is then
apparent that this circumstance is perfectly immaterial with reference to the con-
clusions in question, though it may be important in other points of view.

72. This being premised, we will proceed to an example of transformation more
interesting than the former, namely, the

Transformation from fixed to moving axes of coordinates.

Let x, y, z, u, v, w have the same signification as in art. 70, and let z, y, =, u, v, w
be the new variables, where z, y, = are rectangular coordinates, referring to a system
of moving axes of which the origin always coincides with that of the original fixed
axes of x, y, 2.

Let the direction cosines of the new (moving) axes with respect to the old be
Moy fos Y03 Ais fons V15 gy fhay ¥y thus:

* The final equations in this case will not in general have the canonical form.,
+ I do not know who first used this convenient way of indicating the nine direction cosines by a diagram,
but I first saw it in one of M. Lamg’s works.
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!m Yy z'

X | A | A | A

Y | % | | W2

Z |y |n Yy

where X, &c. are functions of ¢, which may be either given exphcntly, or implicitly
through the variables (see the last article).

The modulus of transformation P is found (art. 69.) by substltutmg for the vari-

ables x, y, z in the expression xu-yv--zw, their values in terms of «, y, z; we have
therefore

P= (7\0‘77+7\!y +7\2z) u- ({’-’ox'l"/"'ly +{b2%)V+ (”ow+"2y+”2z)w 5
and then the three equations

dP dP P
—l—i;——“u, d—y=v’ E:w, give

U =AU,V -, W u=Au+ rv+ Aw
v =7\,u+‘wlv+vlw}, whence { v =putpwo+ww,. . . . . . (85.)
W= 04,V ~+-2,W \LW-——' vou~+ v+ vow.

Also we have (see Theorem VIII. art. 64.), since P is to be considered to contain ¢
explicitly through a,, &c., only,
—-‘—(7\0‘”+7\1y+7\2z)u+(lbom+.“‘1,y+.”‘2 )V+("ow+"1y+"zz)wa

in which expression the values of u, v, w in terms of the new variables are to be sub-
stituted from (85.). Now if we put w,, »,, », for the angular velocities of the moving
system of axes about the axes of «, y, z, respectively, so that

wy=MA\, +#‘2H'11+V2V,1= - (7\17\,2+.u‘1{"’l2+”1'l2)> &e.,

it will be immediately seen that the usual relations between the nine direction cosines
enable us to put the result of the substitution in the following form:

\dt)“‘w" Yw—2v) o, (3u—1rw) +w,(TV—yu).
The original differential equations

dZ

,—‘———,
X'= = u= &e
are then transformed into
dd
w’_du, u————> &c. (art. 64.),
where Z) ( )

MDCCCLV.
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Introducing the above value of (%)), and omitting the brackets, we obtain for the

system of transformed equations,

elz
du

-

¥=""Hdu,y—wz, u':—%-zw-+w2v—wlw

dZ A
y'=% Fwg—wx, V= —d_y—l-wow—%u

\'g

(86.)

!

dZ dZ
= Fer—ay, w'= ——tou—ap

in which Z is supposed to be expressed in terms of the new variables.

73. On the principles of the integration of this, and of transformed systems in
general, I shall make some remarks hereafter. For the present, the following may
be observed. If, in the transformation of the last article, we suppose the motion of
the new axes given, then a,, &c., and therefore also v, w,, @,, are given explicit func-
tions of £, But if the motion of the new axes is only given by connecting it with the
motion of the point m itself, then the above quantities are given functions of the
variables and their differential coefficients.

The most interesting case of the latter kind is that in which the motion of the new
axes is assumed to satisfy the equations

Q=B L (a)

which express the condition that the instantaneous axis of rotation (of the moving
axes) always coincides with the radius vector of the moving point m*.

The radius vector traces, in fixed space, a certain conical surface. It also traces,
with reference to the moving axes, another conical surface; and we might always
assume as one of the conditions defining their motion, that this latter should be any
proposed surface ; that is, we might assume that the new coordinates x, y, ¥ should
always satisfy the equation ¢(x, y, x)=0, ¢ representing any given homogeneous func-
tion. If to this last assumption we add the two conditions expressed by the formula
(«.), we further assume that ¢he conical surface traced by the radius vector with refer-
ence to the moving axes, rolls upon that traced in fixed space.

Suppose, for example, we assume for the equation ¢(x, y, 2)=0, simply 2=0. This,
with the conditions («.), will express that the radius vector is always in the plane of @y,
and that this plane rolls upon the conical surface traced by the radius vector in fixed
space. We may then say that the plane of 2y is the * plane of the orbit,” and that
the axes of &y, or any lines fixed with reference to them in their plane, are “fixed in
the plane of the orbit-.”

* See Jacosr’s first letter to Professor Hansey (CreLLe’s Journal, vol. xlii. p. 21). This letter appears to
refer to some unpublished (?) results of Professor Hansewn, which may possibly be similar to those of this
article.

t The student of elementary treatises is, I believe, always left to find out for himself what this expression
means, or ought to mean.
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Now since we are supposing the equations to belong to a dynamical problem, we
have u=mx', v=my', w=mz', and if we substitute on each side of these equations
the values derived from (85.), art. 72, we find easily

u=m(2'+ o,z —wy), v=m(y tw,x—uz), w=m(2+uy—o7r),
relations which are true on all suppoaztwns as to the motion of the axes; but the
assumptions (w.) reduce them to

u=mx, v=my', w=mz.

The further assumption 2=0, which involves 2'=0, gives w=0, and also (by the
equations (.)) w;=0.  Thus the equations (86.) are reduced to

v/ Y/
u

a::—,

du — T iz
':é—z—a D’:—@
dv dy
=%7,—Z—U, O=—-@+w U—awy,

where in ———and ——, g and w are to be put =0 after the differentiation. It is to be

observed also, that the values of u, v, w above given reduce the three first of the

equations (86.) to the form u=1m %, v=m ‘i,% w=m % from which it is evident that

Z:.;”—2 (u2+v2{w2) —-U,

where U is the original force-function, expressed in terms of the new variables. This
depends only upon the conditions (».); but in the case now considered we have also
w=0.

Let the origin of coordinates be the Sun; m a planet disturbed by another planet
m, whose original coordinates are x,, y, 2z, and new coordinates z, v, %,; also let
X4yt =r, P4y =r, Xty ta=r, ¥+y +=r}, and (x,—x)’+(y—y)’

+(z,—2)’=%; we have evidently r’=72, r*=r?, and
(%, =%+ (y,=¥)"+ (2 —2)"=(2,—2)"+(y,~y)"+ (3, —=)’,
and xx,+yy,+zz,=2xx,+yy,+ 23,
We have then originally
U_——+mm< XX:+YY1+ZZ>

r

1

where p=m+mass of Sun; and it is evident that this expression preserves the same
form when expressed in terms of the new coordinates, and also (which is essential to

the validity of what follows), that ‘%, &c. are the same whether the differentiation

2x2



326 PROFESSOR DONKIN ON THE

be performed before or after the substitution for x, y, z, in terms of 2, y, . If then

we put =0 and
1 zz,+
"”%(g““";sﬂ,')’

we shall have, from the fourth and fifth of the transformed differential equations*,

.Z’": —’—"L-x %I—{
7.3
Y (87.)
w
y'= +——

from which it is evident, that, assuming the motion of m, to be known relatively to the
new axes, the variations of the four elements of the orbit of m which determine the
dimensions of the orbit, its position relatively to lines fived in its own plane, and the
time of perihelion passage, will be expressed in terms of the differential coefficients
of R in the same way as if the plane of the orbit were fixed. But the motion of the
node of the orbit upon the fixed plane of xy, and its inclination to that plane, must be
determined by means of the last of the differential equations, as follows: that equa-

dZ '
wlu—woviz. (E) (Z:O) 5

or if we put —Q for the term multiplied by mm, in the value of U given above,

W U— wgv:(% m”—l—ﬂ)

and z is to be put =0 after the differentiation, which reduces the above to

W U—w, v—(‘m)-
1 oY _d"zT

Let a24a#?=0?, so that « is the angular velocity of the plane of the orbit about the
radius vector; then (observing that u=ma’, &c.) we have

tion gives

Wq wq 0! ’Ua)o —_— uwl

zy o may—aly)
whence Vwy—Uw, =7~"; (xy —2'y)
="/ pa(1=&) T
and therefore mo=— — — ( dz)

Vual—e*

which gives « in terms of the four elements referred to above, and of # And if we
put s+ for the inclination of the orbit to the plane of xy, » for the longitude of the node

* These equations (87.) have been obtained in a different way by Mr. Bronwiy. Camb. Math. Journ.

vol. iv. p. 245.
+ See below, art. 80.
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referred to the axis of x, and (3 for the angle between the axis of  and the node, the
usual formulee of rotation give
{=w, cos B—uw, sin 3
Jsini=w,sin B+w,cosB . . . . . . . . . . (88)
B'=w,—' cos
If in these expressions we put wO::% o, w1=?-7/:oc, #,=0, and call & the angle between

the radius vector and the node, so that «, cos 3—w, sin 3=r cos ¥, &,sin 3+, cos 8
=rsin Y, we obtain finally
g .
/=wcosy, v’:oassl.n » B'=—usinJcoty,
1n 4

in which the expression above given for « is to be substituted.

\ a0\ . 1 1 . .
The actual value of (?l?) ismmg, <F*—8_3)’ which (since g, r, &c. are supposed

G

given in terms of £) may be expressed in terms of the four elements first mentioned,
and ¢.

I propose to consider the transformation of the differential equations of the planetary
theory in a more general manner in the following section. At present I shall add
some remarks on normal transformations in general.

74. Theorem. If

_dZ ., dZ
x,.._d—yi,yi_%i...........(SQ.)

be a system of 2n simultaneous differential equations, where

sz(wl)yl7 m2,y2’ obe p) q’ T’ AR t)o
and p, g,r,... are also explicit functions of ¢,, &c.,y,,&c. and ¢, but are exempt from differ-
dZ d7Z
du; dy;
formed by a normal substitution of new variables £, &c., 7, &c. (art. 62, equation
(73.)), then the transformed equations are, as in art. 64,

entiation in taking the differential coeflicients

; and if these equations be trans-

g0, 42 . _d¥ dZ

Cody  dy ‘ dg;  dg;
in which Z is expressed in terms of £, &c., #,, &c., but the differentiations with respect
to &, » are performed before the substitution of these variables in p, ¢, 7, &c.; in other
words, p, g, 7, ... are still to be exempt from differentiation in forming the differential
equations.

This may be proved simply by repeating the reasoning of art. 64. The only dif-
ference is, that in the term

b

dZ dxj » dZ dyj

: : . dZ dZ . .
the differential coefficients & dy, 2T now taken only so far as Z contains z;, y; inde-
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pendently of p, g, 7, &c. ; and therefore the term represents the differential coefficient
dZ . . .
. taken so far as Z contains 7z independently of p, ¢, r, &¢. The same reasoning

applies to the corresponding term in the value of 7. The theorem is thus established.

It is evident that it may be combined with that given in art. 71, where other func-
tions analogous to p, ¢, 7, ... are introduced by the modulus of transformation P.

If we call the form of the system of differential equations (89.) canonical when the
differentiations of Z with respect to x,, &c., y,, &c. are fotal, we might call it pseudo-
canonical when Z contains functions of «,, &c., y,, which are exempt from differentia-
tion in forming the differential equations.

In like manner, if we call a transformation of variables normal, when the differen-
tiations of the modulus P (equations (73.), art. 62.) with respect to £, &c., y,, &c. are
total (as in art. 62.), we might call the transformation pseudo-normal when P contains
functions of the variables which are exempt from differentiation in forming the equa-
tions of transformation (as in art. 71.).

Adopting these designations, we may enunciate the following general theorem of
transformation :—

Theorem X.—If a pseudo-canonical system be transformed by a normal or pseudo-
normal substitution, the transformed equations are also pseudo-canonical, and may be
tormed by the rules applying to normal transformations of canonical systems, provided
that the functions which are originally exempt from differentiation with respect to
the variables, be continued exempt to the end of the process; but if such functions
occur in the modulus of transformation P, they are subject to total differentiation

. . . ap
with respect to t in forming the term —-  (See art. 71.)

¢
[With respect to this theorem there is one important remark to be made. Ifw, v
be any two functions of x,, &c., y,, &c. (with or without p, g, r, ... and ¢), the equation
du dv  du dv du dv  du dv
(g o= ay)=> (o i ) @t 63)

is now only true on condition that the substitution of the actual values of p, ¢, r, ..

in terms of the variables be not performed till after all the differentiations. ]
75. The theory of the variation of elements affords an interesting example of the

theorem given in the last article. Consider the following system of differential
equations,

a?,=%—|-@’ Y=g’ e (90.)
. dZ dZ . . e . . .
where in &y, the differentiations are fofal, but Q is supposed to contain functions

of x,, &c., ), &c., which are exempt from differentiation in forming the above equa-
tions. The system

az . dz

X, = Jy—i) yz’: _dx,
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is canonical. Let us assume then that a complete set of normal integrals a,, ... a,,
by, ... b, of this latter system is known, so that we have

a;=o¢,(x,, &c., y,, &c., £), b=y (x;, &c., y,, &c., t).

The assumption of these last equations to represent the solution of the complete
system (90.) is simply a transformation of variables, (a,, &c., b,, &c. being the new
variables) ; it is also a normal transformation, since the equations connecting the
new and old variables may be put in the form (see Theorem VII. art. 49, and art. 62.)

X iX _
dxi =Y Ell—,- - bi)

where X (the modulus of transformation) is a function of x,, ... 2,, a,, ... @,, t. The

. . . . aX .
function ¥ of art. 62 is now obtained by expressing — —-in terms of a@,, ... b, ..

; . dX . . .
but since Z is — 7 expressed in terms of x,, &c., y,, &c., it follows that when Z is

expressed in terms of the new variables a,, &c., b,, &c., it becomes identical with V.
Now if the process of art. 63 be followed, mutatis mutandis, it will be seen that in
the present case we obtain
A/ aQ dy;
a=g,—a~>(a, 1)

in which expression the first two terms destroy one another, and the remaining term
is evidently the differential coefficient of Q with respect to b,, taken so far as Q con-
tains b; independently of those functions which were exempt from differentiation in
forming the original differential equations (90.). Similar reasoning applies to the
expression for b;.

As this result will be useful, I shall enunciate it separately as

Theorem XI.—If the original system of differential equations be formed by treating
_certain functions, p, ¢, 7, ..., contained in the disturbing function Q, as exempt from
differentiation with respect to x,, &c., y,, &c., the equations which determine the
variations of any set of normal elements a,, &c., b,, &c.

, aQ , dQ
al=_d_bl’ b‘=a21_,
on condition that p, ¢, r, ... be treated, in forming these equations, as exempt from
differentiation with respect to a,, &c., b,, &e.

[It is important to recollect, that after these equations are formed, p, q, r, &c. ave
to be expressed in terms of a,, &c., b, &c., and in the integration of the system
a,, &c., b, &c. are to be treated indiscriminately as variables, whether they originally
entered through p, ¢, 7, ... or not].

The Theorem XI. may also be immediately obtained from the general equations
(E.) of art. 52 (in which it is to be remembered that Z includes the disturbing
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function). The above method of deducing it is given as an additional illustration of
the general theory of transformation.

If, instead of the normal elements a,, &c., b,, &c., we employ any other elements,
¢, €3, &e., which can be expressed as functions of the former, the formula (69.) of
art. 54 will still be applicable, with the condition that p, ¢, r, &c. are exempt from
differentiation with respect to ¢, c,, &c.

Section VII.—On the Differential Equations of the Planetary Theory.

76. The differential equations which determine the motions of a system of mutu-
ally attracting material points relatively to one of them, do not, as is well known,
naturally present themselves under the canonical form (I.), art. 49. It is possible
indeed to reduce them, by different artifices, to that form; but it seems doubtful
whether any practical advantage is gained by doing so. When the ordinary method
is followed in the case of a planetary system referred to the sun, there is a distinct
disturbing function for each planet; but it is easily seen that the usual expressions
for the variations of the elements hold good, not merely for each planet on the hypo-
thesis that the motions of the rest are known, but as a complete and rigorous set of
simultaneous differential equations involving all the elements of all the orbits, and
their differential coeflicients with respect to ¢ (and containing of course also ¢ ex-
plicitly). It does not appear that we are practically farther from the attainment of
the rigorous integration of this system, than we should be if it had the canonical form,
as it might be made to have if it were derived from an original system of that form ;
and so far as the development of the disturbing functions is concerned, the most
troublesome part of them, which is that depending on the mutual distances of the
planets, is not likely to be got rid of by any conceivable artifice.

However this may be, all that I propose to do in the present section is to take the
original differential equations in their ordinary form referred to rectangular axes
passing through the sun and parallel to fixed directions, and then to exhibit in a
general manner the effect of a transformation to new rectangular axes, still passing
through the sun, but changing their directions in space according to any arbitrary
law.

77. Let M be the mass of the sun, and m, m, m,, &c., the masses of the planets ;
and put M+-m=p, M+m=p, M+m,=u,, ... M+my=p,. And, referred to the
original axes, let x, y, z be the coordinates of m, x, y,, 2, of m,, ..., X, yu, 7, of m.
Also let R, R, ... R have their usual significations, so that

R—s { M) _ me(XXe) + Yy +220)
(xo—%2+Fo—y)*+ (2 —2)?)* (x3)+yg+23)*
the summation extending to all the planets except m.
Then if we put x¢)+y¢,)+ 2% =r},, the original differential equations of the second
Xy dRg

ovder are such as xz',-)-{-,erzm- Let uy, v, we be the variables conjugate to
. @ t

2



DIFFERENTIAL EQUATIONS OF DYNAMICS, ETC. ' 331

X@» Ya» Z@- Then instead of the original system of differential equations of the second
order, we have the following system of the first order:

X _—dZ(,'), yr _dZ(,) ' =dZ(,')
(@) dll s @ dV @) dw(i)
dZ dZ dZ
“(;)‘I' ©=0, (z)+ ©=0, (z)+ (')"'0,
1 1 —_— (12 2 !"(z)

These equations are not of the canonical form, because R, is not the same for all the
planets. But it is easy to put them in the pseudo-canonical form (art. 74.), a process
which is not necessary, but saves trouble by bringing them under the operation of the
general rules of transformation established in former articles.
In fact, if we take
Z=3 ("?i) Vot e mn‘)f"(i))

2m; rg)

XoX() HYaY» + 2% | XoXo)+YoYo + Zato
Q=2mym; ( = -+ N
1,

1
T (xo—x)*+ Yo—yi)*+ o — Z(j))g)%) ’
where the summation in the first term extends to all the planets, and in the second
to all their binary combinations, and a horizontal line placed over any letter indicates
exemption from differentiation, we shall have

,_dZ Q. _ dZ dQ ol
X0=guytdug V0= kg " dxgy coee e e (O1)

with similar equations for yi,, zy, Vi, W
d!
[The terms 57— Q &c are only written for the sake of uniformity, bemg really =0,

since Q does not 1nvolve Uy, Vi Wy
In these equations Z and Q are the same for the whole system, and the differentia-
tions of Z are fotal; but those of Q are restricted to the quantities not marked by the

@ dx

78. Let us now refer the whole system to new (moving) rectangular axes, whose
position at any instant with respect to the original axes is defined, as in art. 72, by
the variable direction-cosines A, &c. Let x, y4, 2, be the new coordinates, and
Uy, Vg, Wy the new variables conjugate to them. The transformation will be eﬂ'ected
as in art. 72, by taking for the modulus

P=2((7\o‘”<i)+7\13/(i>+7\2z<e>)u<i>+(f"ow(i)‘l‘{":y(i)+!’*zz(i>)"<¢>+(”owa)+'1.?/<i>+”zz<i>)W<i))’
and the result will be as follows : put

Q=Q+,2(2xV0 =Y W) F & 2(ToWe — 3mU) +0,2(Y o ¥e—2T o V)
MDCCCLYV. 2y

. . dQ . .
horizontal line, so that dxg 18 really the same thing as
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(where Q is expressed in terms of the new variables, and ,, »,, #, (the angular velo-
cities of the moving system of axes about the three moving axes themselves) are
marked with the horizontal line to show that these quantities are exempt from diffe-
rentiation in forming the following system of differential equations, though they may
be functions of the variables) ; then the system (91.) is transformed into

, __dZ 4o az  dQ

B S . A Y
@® du(,-) + du(i) @ dx (3) dx(c’) ’ ( )

with similar equations for y;, &c.

In these equations Z is to be expressed in terms of the new variables; and it is
evident from the original form of Z and Q, that when so expressed, these two quan-
tities are the same functions of the new variables that they were of the old, and in-
volve (see art. 74.) the quantities exempt from differentiation in the same way *.
Thus the transformed system (92.) contains no terms explicitly depending upon the
motion of the axes, except those introduced by the three terms multiplied by w,, »,, @,
in the value of ) given above; and the addition of these terms constitutes the only
difference between the form of the old and of the new system.

79. We may now apply the method of the variation of elements to the system (92.)
as follows :—

The system obtained by omitting the disturbing function Q, namely,

. _d4dZ . _dZ , _dZ
T = 7 (i)’ Yo '—%’ ) T dwg (
. 93.)
, iz | Iz ;4 2
u(i)—l-d-———x(i):o: v<i)+[%):0, ’w(i,\"l‘%:()f

is canonical, and consists simply of the aggregate of the equations representing, for
each planet, undisturbed elliptic motion about the sun+- (relatively to the new axes
of coordinates).

The integrals of these equations may therefore be expressed in any of the usual
forms. We will suppose that the elements chosen are

a, e, w, (¢), 4,
with significations corresponding to those given to the same symbols in art. 55.
These letters unaccented will apply to the planet s, and @, ¢, &c., a,, ¢, &c., a,, €,
&c., to the planets m, m , m,, &c.
The definitions of the elements a, e, =, &c. are their expressions in terms of the six

* Since the direction cosines A, &c. are exempt from differentiation in forming the equations connecting the
old and new variables from the modulus P, they continue exempt throughout. (Theorem X. art. 74.) Hence
h T T e _
we have XX+ ¥Y,+ 22 = (Mg + 019 +252) N2+ Ny, +052,) + e =a +yy,+ 27,
and similarly for the rest.
U+ V2 w2

+ Z=2( om —-E;E), the summation extending to all the planets.
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variables «, v, z, u, v, w*, and ¢, and the same expressions continue to be their defi-
nitions when they become the variable elements of the disturbed motion.

Now the general formulae for the variations of the set of elements here chosen
have already been given in art. 55; for it is evident that the process in the present
case would merely be a repetition, for each planet, of the process there employed.
Here however we are to use in every case the disturbing function Q given in art. 78;
but if we observe the effect of the marks of exemption, it will be evident that, for the
planet m, the only effective part of (2 is

wy(20—yw) +w, (2w —zu) +u,(yu—av)—mR ;
and similarly the effective part of Q for any other planet will be given by suffixing
the corresponding number of accents to «, y, 2, u, v, w, m, R.
Now if we put A,, A, A, for the terms multiplied respectively by w,, @, @, in the
above expression, we have, by the definitions of the elements,

(A2 A2+ A2 =m/pa(l —¢*)
A,=—mn/ pa(l—¢é). cos s, A1=m\/{,oa(1 —¢€%).cosvsinis
Ay=—mn/ pa(l1—é*).sinvsiny,

so that the disturbing function, so far as m is cqancerned, hecomes

—m{R4~/pa(1—¢). (#,sinvsini—a, cosvsini-tm, coss)}. . . . . (94)

Consequently, since the expressions in art. 55 were obtained by taking —mR for the
disturbing function, we have merely to add to them the additional terms derived
from the part added to R in (94.). Performing the differentiations, and omitting
afterwards the symbols of exemption over w,, »,, w, which cease to be of any use, we
Oe
';i—t"
those parts of the differential coefficients of a, e, &c., with respect to ¢, which depend
upon the motion of the axes of coordinates, then

Oa Oe ]

v =0, ZE:——O

a(s) Owr [ .
= tan 5(0)1 COS V—w, Sin v) —a,

0 .
— == — (@, COS v+, Sin )

ohtain, after obvious reductions, the following simple results: if %—;‘, &ec. represent

Y

(95.)

= = —ay-+ cot s (v, SIN ¥ — o, COS V)

where it is evident that we may write ¢ instead of (¢) (see art. 55.).

* Not their expressions in terms of 2,y,z,a', ¢/, 2'; for though these are equivalent in the undisturbed equa-
tions, they are not here equivalent in the disturbed equations, and therefore the general theory, which assumes
the former mode of expression, is not here applicable to the latter.

2v2
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The complete variations of the elements are then found by adding to the terms
just written the expressions given in art. 25.

It is easily seen that the expressions (95.) might have been deduced from geome-
trical considerations alone, if we had been at liberty to assume beforehand that the
mechanical and geometrical parts of the variations might be calculated separately ;
the former as if the axes were at rest, and the latter as if there were no disturbing
forces. It would not, I believe, be difficult to establish by & priori and simple
reasoning the validity of such an assumption, and then the above results would only
serve as a verification of the method which has been employed to obtain them.

80. In order however that no obscurity may rest upon the interpretation of the
formulae obtained in the last articles, it is necessary to consider the physical (or rather
geometrical) meaning of the elements «, e, &c., which we have so far only defined by
means of their expressions in terms of the variables x, y, 3, u, &c., and to ascertain
what relation they bear to the elements similarly defined by means of the original
variables x, y, &c., which refer to axes whose directions are invariable.

The relations between the variables ((85.), art. 72.) give immediately

w2+92+ z2=x2+y“’+ 72
W fw=ul4vi4-w?
ur vy 4 2w=ux--vy-+zw;
and if we put yw—zv=A, su—zw=B, rv—yu=C
yw—zv=A, zu—xw=B, xv—yu=C,
we find, by virtue of the relations w,y,—v,u,=2,, &ec., the following equations :
A=7\0A+F‘OB +»,C
=MA+w,B4»,C
C=1A+w,B+»,C
and A+ B+ C=A+B+C.

Now A(=yw—zv=m(yz'—zy')) is the projection on the plane of yz of the areal
velocity of m (relative to fixed space) multiplied by the mass, and B, C have analogous
meanings; hence it is evident from the above equations that 4, B, C are the pro-
jections on the three moving coordinate planes of yz, =z, 4y of the absolute areal
velocity of m relative to fixed space, multiplied by the mass. (The projections of the
areal velocity relative to the moving axes would be yz'—zy', &c., which are not pro-
portional to yw—zv, &c., since , v, w are not the same as ma’', my', mz', except on a
particular hypothesis as to the motion of the axes. See art. 73.).

Inasmuch as the definitions of the elements a, e, s involve the variables only in the
forms 2*’+y’+42*, w4v’+w’, 4, B, C, it follows that these three elements are
respectively the semiaxes, excentricity, and inclination to the plane of xy, of the absolute

osculating ellipse of the orbit in fived space. Thus the instantaneous ellipse, relatively
to the moving axes, is of the same dimensions and in the same plane as the true
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‘osculating ellipse ; and it only remains to show that it coincides with the latter in
position, for which purpose we must prove that it touches the true orbit. (It does
not in general touch the relative orbit, because ma', my', mz' are not in general the
same functions of the elements and ¢ that u, v, w are.)

81. If we suppose the coordinates x, y, = of m expressed in terms of the elements

a, e, &c. and ¢, and denote by s &ec. their differential coefficients taken so far as ¢

dz dy dz
appears explicitly in these expressions, then — - 7?:, 7 are proportional to the direc-

tion cosines, relatively to the axes of z, ¥, 2, of the tangent to the (relative) instan-
taneous ellipse. And therefore the direction cosines of this same tangent referred to
the fixed axes of x, y, z, are proportional respectively to '

dz dz dz
Aozz'l')\l dt"‘l';\a o oo dt‘l"f"l +(b2_t2;f, Yo ;E"' ldt+ 237 dt

On the other hand, the direction cosines of the tangent to the absolute instantaneous

_d_x dy dz
a’ A’ @t

coefficients of x, y, z, taken so far as ¢ appears explicitly in the expressions for those
variables in terms of the elements of the absolute ellipse). The identity of the two
tangents will therefore be established, if we can show that ‘

dx da:
T g ldt+7\2dt’ &e.

ellipse, referred to the fixed axes, are proportional to (the differential

Now —; is that part of z' which does not depend upon the disturbing function; i. e.

(equations (92.), art. 78.) we have identically
dv__dZ dy_dZ dz __dZ.

@ W A d A dw

dx__dZ dy__ dZ dz__dZ

#dw & dv At dw

where Z is the same as before, but expressed in terms of x, y, z, u, v, w, instead of
z,y,%,u,v,w. Now let the latter set of variables be expressed in terms of the former
by the formulee of art. 72, and we have

dZ d7Z duv  dZ dv . dZ dw
T du Eﬁ+dv du+dw du’ &e.

and, in like manner,

du dv dw

but 2&:7\0, d_u=)\" E:M ((85.), art. 72.), &c.,
dx dz

and therefore F=rgr dt+7‘2 dt’ &e.,

as was to be proved.

82. It follows, then, that the mode of treating the problem adopted in the pre-
ceding articles is equivalent to representing the motion of each planet by means of
the true osculating ellipse of its actual orbit (relatively to the sun) in fixed space.
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The definitions of all the elements (relative to the moving axes) in terms of the six
new variables z, y, 2, u, v, w, have the same form as those of the corresponding
elements (relative to the fixed axes) in terms of x,y, z, u, v, w. The two relative
elements a, e are the same as the corresponding absolute elements ;  is the inclina-
tion of the plane of the ellipse to the moving plane of xy, and » the longitude of the
node reckoned from the axis of #; and since the place of the body in the ellipse is
evidently the same, the relations between the remaining elements = and (¢) (or ¢) and
the corresponding absolute elements are purely geometrical,

Comparing these results with those of art. 79, we see that the independence of the
formulae for the mechanical and geometrical variations of the elements of the true
osculating ellipse is completely established.

83. In all that precedes, the three variables @), ,, », (the angular velocities of the
system of moving axes about the axes themselves) are entirely arbitrary ; they may
be either explicit functions of ¢, involving only determinate constants, or they may
depend in any way upon the relative or absolute elements of the orbits of any or all
the planets, and their differential coefficients with respect to £. In the case in which
the expressions for wy, w,, w, involve only the relative elements, when these expressions
are introduced in the formulee (95.), art. 79, and these formulae completed by the
addition of the terms in art. 55, and when the corresponding sets of equations are
formed for each planet, we obtain a set of simultaneous differential equations in-
volving all the elements of all the orbits, and their differential coefficients with
respect to Z.  The integration of these equations would determine all the elements
as functions of #, and thus the motion of all the planets, relatively to the axes of
coordinates, would be known. Lastly, the motion of the whole system, relatively to
fixed space, would be found by integrating the system of equations

L'=w,cos X —au,sin X
N'sin L=w,sin X+#,cosX ¢ - + - - - - - . (96)
X':w2—N' cos L

where a,, »,, @, are now given functions of £, and L is the inclination of the plane of
xy to that of xy, N is the longitude of the ascending * node of the plane of xy,
reckoned from the axis of x, and X is the longitude of the axis of x, reckoned upon
the plane of xy, from the node, in the direction of positive rotation.

In the case in which &, »,, w, cannot be expressed in terms of the relative elements,
the integrations which determine the relative motion of the system cannot be sepa-
rated from those which determine the position of the axes in fixed space; but the

equations (96.) must be considered simultaneously with the other differential equa-
tions of the problem.

* Ascending relatively to a positive rotation, . e. from « to y.
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Application to the Problem of Three Bodies.

84. I propose to exemplify the preceding principles by applying them to the trans-
formation of the equations which determine the motion of three mutually attracting
bodies, considered as material points. Let them be called the sun and two planets,
and let the origin of coordinates be placed at the sun, and the notation be the same
as in arts. 77-79, so that M, m, m,, are the three masses, M+m=p, M+-m=p, &e.
Let the elements be chosen as in art. 55, and longitudes be measured, as before,
along the plane of 2y (from the axis of x) as far as the node, and then along the plane
of the orbit.

Putting for convenience mR=Q, mR =, we have

1

Q=mm{(r*+r’>—2rr,cos x)"t—rrcos x}

Q=mm{(r*+r>—2rrcosx) *—rr-*cos x},
where ¥ is the angle between the two radii vectores. Let I be the mutual inclina-
tion of the planes of the two orbits, and let the angular distances, on the planes ot
the orbits, between their ascending nodes on the plane of xy and their line of inter-
section, be respectively v, v,; so that d—v—y, §,—v,—v, are the angular distances of
the two radii vectores from the line of intersection (which we may call, simply, the
line of nodes). We shall then have

cos ;= cos (d—v—vr)cos (4, —v,—v )+ sin(§—v—v)sin (4, —v,—v ) cos Il

.
COSI—COSICOSI—I-—SH]ISII]I(,OS(V—V)* (07
and v, v, are functions of 4, 4, »,—», determined by the equations
cot v sin(y,—v)=— cotsin s+ cos(y,—v)cos :} ‘ (98.)
cot v sin(y,—v)=cot s sin s+ cos (y—»)cos
Now considering Q as expressed, on the one hand, in terms of r, 7, 4, 8, v, v, 4,4, and

on the other in terms of all the elements and ¢, we have rigorously, as may easily be
proved in the usual way,

d0_do 4o d0_do 40
B=& Vi @ & e,

* The arrangement referred to here and in the following
articles will be made clear by the accompanying diagram.

1 Since the values of » and § in terms of the elements and
t are of the forms

r=f(/ndt+e—w), 8=/ndt+a+o(/ndt+e—m=),
Cdr | dr db  di

&t
from which the equations in the text follow immediately. It
may be as well to remind the reader who may happen to
recollect the note to the Astronomer Royal’s tract on the
Planetary Theory (p. 91, ed. 1831), that that note refers to *
a different way of measuring longitudes.

we have
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with similar equations for Q. In what follows, I shall, as an abridgment, employ

the symbol E to denote the operation —+——: and in like manner I shall put E, for
—.+——, so that

@

__d0 , d0
EQ——JE—+%’ &c. . . . . . . . . . (99.)

Since r and ¢, when expressed in terms of the elements and ¢, do not contain 4, 4, v, »,

we have
daQ aQ .dcosx dQ__ dQ dcosy
‘dv dcosy dv di~ dcosy di
deosy__ dv\dcosy dv dcosy
and o (l+dv) & d

+ sinssin 4 sin (§—v—v) sin (§,—v,—v) sin (y,—),

in which expression the values of ‘;—';, % are to be obtained by differentiating the equa-
i

tions (98.). In like manner we find

deosy ___dvdcosy dv dcosy

d A A d .db,
+ sin (0—v—) sin (4, —v,—»)( — sin+ cos 4+ cos ssin s cos (v, —1)).
Analogous expressions may be found for %‘(}, i‘“‘l’-
I [

85. Hitherto we have assumed nothing concerning the motion of the axes of
coordinates. Let us now however take as a first assumption that tke plane of xy shall
always pass through the line of nodes. This implies the conditions*

=y, v=0, v,=0,

and consequently I=s—..
Introducing these conditions in the expressions at the end of the last article, and

* The legitimacy of the following processes will be apparent to the reader who shall have followed the
general reasoning of former articles, though probably not to others. In either case it may be useful here
briefly to recapitulate the principles now to be applied. The results of art. 79, and in particular the expressions
(94.), (95.), were established independently of any assumption as to the values of w,, w;, w,, which are perfectly
arbitrary. We are therefore at liberty to assume that wy, w,, w, are such functions of ¢ that any three func-
tions of the variables shall constantly =0. Thus the first assumption made in the text is that v,—v shall con-
stantly =0. But since such assumptions may cause (as in this case) certain elements to disappear from the
expression of £, it is necessary to perform the differentiations of Q with respect to such elements first; the dif-
ferential coefficients may or may not vanish, on afterwards introducing the assumptions; if not, we find ex-
pressions for them in terms of differential coefficients with respect to otker elements whick do not disappear ; so
that instead of differentiations which ought to be performed defore the assumed conditions are introduced, we
have finally only such as may be performed afterwards. The expression * disappear” does not, it must be
observed, necessarily mean the same as “vanish.” Thus the condition v,—»=0, causes » and », both to dis-
appear from €, but does not of course imply that they both vanisk. '



DIFFERENTIAL EQUATIONS OF DYNAMICS, ETC. 339

observing that %%:EQ, &c. (see equation (99.)), we have evidently
dQ ' dv dv
%=“(1+ :3;>>EQ (F)E

a0 (de d, Q.
—5_—(37)139 ()EQ ¥

and it only remains to find the values of <d> &c., namely, the values of 7 Ly &c.,

which correspond to the assumed conditions v —»=0, v=0v,=0.
Now in any spherical triangle of which a, b, c are the sides, and A, B, C the oppo-
site angles, if @ be considered as a function of ¢, A, B, by virtue of the equation
cot a sin c= cot A sin B4} cos ccos B,
we have by differentiation

=(sin a)*(cot a cot ¢+ cos B)

= cos a sin a cot ¢4 (1—(cos @)®) cos B= cos B+ cos acot Csin B

da (sina 2sinB sinesin B

dA=\sinA) sinc smC
gg (S_;‘%E)_ cot A cos B4 cot ¢(sin @) sin B=sina cot C ;

and if the sides of the triangle be indefinitely diminished, these expressions become,
in the limit,
idg sin (B+C) flﬁ___o @____0
de—  sinC ~ dA~  dB”
provided the angle C do not vanish.
If these results be applied to the triangle of which the sides are v, v, », —v, and the

opposite angles 7—1, 1, I, it is easily seen that the values of ( ) &c. are as follows :
dv __sin sin g, dv) sin by do\ _ __sins fdy, __sins
%)" “sml \&,) sml \@/)"  snl \&,/ sn I

(=(5)-(5)-()-o

provided I be not =0. We have therefore

dQ .
- =—EQ+ I( in4.EQ+sin.EQ)
(100.)
a__ 4,
d— " dl’
exactly in the same way we find
aQ, . .
dv, —EQ—4- I(sm:.E,Q,+ sin 4. EQ)
(101.)
daQ, dQ,
&, = dI

MDCCCLYV. 2z
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The variations of the elements will now be found by introducing the above values of
dQ aQ}, dﬂ dQ

r EZ’ 4’ d_t,

in the expressions given in art. 55, and completing these expressions by the addition
of the terms (95.), art. 79. But the angular velocities w,, »,, , are no longer wholly
arbitrary, since we have wmade ore assumption concerning the motion of the axes,
which implies one relation between these quantities and the elements. In order to
determine @, ,, w, completely, it will be necessary to make two more assumptions ;
but first we will investigate the relation already implied.

86. The complete expressions for v, J, obtained in the way mentioned in the last
article, from arts. 55 and 79, may be written in the following form: put for brevity

m\/f”a'(] —¢) =P, m;\/f’ﬁal( 1— 612) =P»

and put pie-# for n, and p2a,~% for n,; then

1 d0 .
= @ -+ cot +.(w, sin v—au, COS ») —w,
(102.)
1 4o,
V=, + fzot 4,.(w, SIN Y, — @, COS V) —w,
and if the latter equation be subtracted from the former, and the conditions
pe=y, B d“Q' ay_ A =1
A i di, ) S
be introduced, the result is easily found to be
. ' . sins dQ, = siny, dQ
(@, SN y—w, cos »)sin I=7f a1 7-1 a1 - - - - - (103)

.This is the relation between w,, », and the elements and ¢, implied by the one
assumed condition that the plane of xy passes through the line of nodes. = The angular
velocity w, of the system of axes about the axis of 3, is so far left, as it evidently
ought to be, perfectly arbitrary.

Q and Q, are now functions of the following elements* only :—

a, e, (g), =, a, e, (), =, I, n.
And we now have
cos )= cos (0—») cos (§,—»)+ sin (d—y) sin (¢, —») cos L.
87. The complete expression for /, derived from arts. 55 and 79, is easily put in

the form
: 1 .
L — ein ‘{ 7 +(1 —cos ) EQ} (wyco8 v+w,8inv) 5

and, on introducing the assumptions of the preceding articles, this will be found to
become, after simple reductions,
psinl. ——(cos [.LEQ+E,Q)— (aycos v+a,sin ») psin I

* On the difference between (&) and ¢ see above, art, 55. We cannot strictly call Q a function of « and &.
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similarly, we find ,
psinl.i=cos 1.E Q4 EQ,— (w,co8 v+, sin») p;sinl;

and since I'=/—/, we obtain from these

pp,sin LI'=p(cos .LEQ4EQ)+p,(cos 1. EQ—I—EQ), ... (104)
an equation which may be transformed as follows :—since
Ba_‘_ Be
Z=0, —=0 (art. 79),
we find from art. 55, ’...‘Z?+32_EQ

and similarly p=E Q,, whence it is easily seen that the above equation may be written
in the form
(pp,cos ) +pEQ+pEQ=0. . . . . . . . (105.)
If we investigate, from the above expressions for / and , the values of (p sins)' and
(p,sins), we find ,
sin L. (p sins)'=—(cos s..E4-cos +.E)Q—p cos s sin I (w, cos v+u, sin ),
- sinL.(p,sins)'=(cos +.E4-cos 4.E)Q,—p, cos s;sin I (», cos v+, sin v),
and, adding these equations,
sin I.(p sins+psins)'=(coss.E-4cos.E)(Q,—Q)
—(pcosi+p,coss)sinl.(w,cosv+wsiny). . . . (106.)

With vespect to this equation and (103.), it may be observed that w,cos v~ w,sin v
is evidently the angular velocity of the plane of xy about the line of nodes, and
w,cos v—a,sinv is the angular velocity of the same plane about a line in itself per-
pendicular to the line of nodes; or; which comes to the same thing, the angular
velocity of the line of nodes itself in fixed space, estimated perpendicularly to the plane
of xy. |

88. The position of the plane of xy at any instant has been so far left arbitrary, ex-
cept that it has been subjected to the condition of passing through the line of nodes.

As a further assumption, that which most naturally presents itself is, that ¢he plane
of xy should always coincide with the principal plane. By the principal plane I mean,
of course, that on which at any instant the sum of the projections of the areal velo-
cities (multiplied by the masses) of the two planets about the sun, is a maximum ; it
evidently always passes through the line of nodes, and would be the invariable plane
if the disturbing functions vanished.

To determine the position of this plane we have (see art. 80.) to express the con-
dition that s and 4 are always so taken, subject to the equation s—i=1, that the ex-
pression ma/ pa(1—e).cos i4+mp/, wa(l—e?).coss shall be a maximum. We will
put ¢ for the value of this expression, so that using p and p, with the same meaning
as before (see art. 86.), we have

6=p COS i+p,COS 4,
2z2
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and the required condition of a maximum will evidently be

psinstpsing=0%*;, . . . . . . . . (107)
adding the squares of these expressions, we obtain
c=p*+p’+2ppcosl, . . . . . . . . (108)

which determines the actual value of ¢; moreover we have

sins siny, sinI

—_— — —_ . . . . . . . . C .

= p - _ (109.)

and it is easy to find o coss=p-+p,cosl } R € S 108
¢ cos s =p,+p cos I

so that o, sins, sins, cosy, coss are all simply expressible in terms of p, p, and I.
The variation of ¢ is easily found by means of the equation (105.), which gives

o'=(pE—pE)(Q—Q). . . . . . . . . (111)

The equation (103.) now gives (see (109.))
o(w,COS y—a, Sin r)=gi(Q,——Q) S ¢ 1 B

and from (106.) we obtain

o®sin I(w, cos v+, sinv)={(p-+p,cos ) E 4 (p,+p cos ) E}(Q,—Q). .  (113.)
The two last equations determine the motion of the principal plane in space, irre-
spectively of any arbitrary sliding motion which we may attribute to it in its own
plane. For they give the angular velocities with which it is at any instant moving

about two lines at right angles to one another in its own plane (see the end of art. 87.).
They may be put in another form as follows :—the actual value of Q,— is

r 7
mm,( 5— 2 | cos y,

where cos x has the value given above (end of art. 86.); and if the operations indi-
cated be actually performed, observing that Er=0, Er=0, &c., and that

d
E cos y= c;:x: &c.,

the results will be found to be

o(w,COSV—w,8in v)::mm,sinl.(%-—%) sin(d—v)sin (6,—»)

6*(w,c08 V4w, sinv) =mm sin I(:—;—%) X (pcos(d—v)sin(6,~»)-+p,sin(d—vr)cos(0,—v)).

Here 6 —v, §,—v represent, it will be remembered, the angular distances of the planets
from the line of nodes.

We will assume for the present the condition w,=0, so that the plane of zy may
have no sliding motion, but ro// upon the conical surface to which it is always a tan-

* Referring to the arrangement supposed in the diagram, it will be seen that : becomes negative in the case
now considered.
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gent plane. If, then, we call » the actual angular velocity of the'principal plane
about its instantaneous axis of rotation, so that #=+/#!+4?, and put j for the angle
between the line of nodes and the instantaneous axis (which is the line in which the
principal plane is intersected by its consecutive), we shall have

@, €08 v+, Siny=w cosj and «,cosy—w,sinv=wsiny;
and the above equations give
o cot j=p cot(d—v)+p,cot (§,—v),
a result which may also be put in the form (see (109.))
sin I cot j=sin 4 cot (0—») —sins cot (6,—»).

It is very easy to show by spherical trigonometry that this equation signifies that
the instantaneous axis coincides with the line in which the principal plane is inter-
sected by the plane of the two radii vectores*. In other words, we have this theorem :

The principal plane always turns about the line in which it is intersected by the plane
of the two raduii vectores.

It follows of course that the principal plane always touches the conical surface
described in fixed space (relatively to the sun) by thesaid line. I think it probable
that most persons would expect, at first sight, that the principal plane would always
touch the conical surface described by the line of nodes, which, as has been just
shown, is not the case. It is perhaps worth while to verify this result by inde-
pendent reasoning.

89. Let Roman letters refer, as in former articles, to axes of coordinates having any
arbitrary fixed divections. Then, putting A=m(yz'—zy'), &c. (as in art. 80.), and
using &, 7, { for current coordinates, the equation to the principal plane is

(A+A)E+B+B)r+(C+CY)l=0; . . . . . . (114
and the line in which this plane is cut by its consecutive is determined by combining
the equation (114.) with that obtained from it by differentiating the coefficients of
g, 1, { with respect to ¢; namely,

(A'+ANe+(B'+B)y+(C'+C)¢=0. . . . . . (115,

Now from the fundamental equations
dQ
mx”+m‘w—xlgg=~d;, &ec.,

we obtain A'=m(yz"'—zy")= ydZ z‘zﬂ.—mm/(yz zy) (37 —17?)

* Let y be the angle between the principal plane and the plane of the radii vectores; the former plane
divides the angle I into two parts, of which one is 4, and the other is —¢; and we get two spherical triangles
which have a common side j, with adjacent angles s, and ¥ in one, —s and #— in the other; hence

cot(8—v)sinj=rcot P sin i+ cos cos
cot(f,—v)sinj=cot{ sins,+cosj cos;

and if cot Y be eliminated between these, the result is the equation in the text.
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(where 3 is the distance between m and m); and in like manner
A'=—mm/(yz,—zy)(d"*—r?);
we have therefore A+ A'=mm(yz,—zy)(r,°—1r7?),

with similar expressions for B'4+B, C'4+C); so that, when the common factor
mm,(r,"*—r~*) is omitted, the equation (115.) becomes

(yz,—zy e+ (zx,—x2z)n+(xy,—yx,){=0,

which is evidently the equation to the plane containing the two radii vectores. Thus
the theorem in question is verified.

90. To return from this.digression: the motion of the line of nodes in the principal
plane will be given by putting »,=0 in either of the equations (102.), and introducing
the value of w,sin v—a, cosv from (103.). In this way we find, after slight reductions,

. dsd aQ
pp,sin L/=p,cos s -y+pcosi_s

in which we may substitute for coss, coss, the values given by equations (110.); this
gives

: o, a0, .
app,sin Ly = (p?4pp, cos )7 +(p*+pp, cos I)TJ'I—I 5
or, if we introduce the actual values of %—% %%‘, we find

ppy=—mmjrrsin(§—v)sin(8—») X {pcoss. (37> —r~*)4p,cos4 (07 —r~*)}.

It is not my purpose however to enter further into details; and I shall conclude
this subject by briefly examining the consequences of a slightly different assumption
as to the motion of the axes of coordinates. I shall suppose, namely, that the plane
of zy still always coincides with the principal plane, but has a sliding motion such
that the axis of @ always coincides with the line of nodes.

91. The assumption made at the end of the last article implies the condition y=0;
and w, will no longer be 0, but must be determined by equations (102.); either of
these gives (putting »¥=y'=0, and reducing by means of (103.), (109.), &c.)

. aQ dQ) .
pp,sinLay=p,cossor+pcosizy, . . . . . . (116)

which coincides, as of course it ought, with the expression given for »' on the former
hypothesis (art. 90.). The difference is that Q, Q, now no longer contain ».

The valaes of «,, », are obtained at once by putting »=0 in the equations (112.),
(113.); and all the conclusions which were derived independently of any supposition
as to the value of w,, subsist as before, when modified by putting »=0.

We may add one more equation, which is required in forming some of the expres-
sions for the variations of the elements; namely,

tant=_ S0l a7

[ 2.
§ o-+p+p,cosl
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This is easily obtained from (109.) and (110.) ; and in like manner
tanti=__ P sin I
2 o+p+pcosl
I shall now recapitulate the results of the last supposition, so as to exhibit in one
view the transformed differential equations of the problem of three bodies. It will
be as well to repeat also the explanation of the symbols.

92. Signification of the Symbols.

M, m, m, are the masses of the sun, and of the two planets, and M+m=p,
M+4m =,

a-and e are the semiaxis and excentricity of the instantaneous ellipse described by
m about the sun.

a, and e, have the same meanings with reference to m,.

I is the inclination of the plane of the former ellipse to that of the latter.

4, 8, are the longitudes of the two planets, measured in the planes of their orbits
Jrom the common line of nodes.

r, r, their radii vectores.

@, », the longitudes of the perihelia, measured likewise in the planes of the orbits
Jrom the line of nodes.

¢ 3
¢, £, two elements such that j‘ndt+s, ~s'n,dt-l—zs, are the mean longitudes, where n, n,
0 0
are defined as usual by the equations #”’=pa™%, n’=pa*
3
Thenyndt+e—-w is the mean anomaly of m, and r, 4 are functions of the mean
0
anomaly and mean longitude given by the laws of elliptic motion. The same is true
for m, mutatis mutandis.
x is the angle between the radii vectores, so that
‘ cos y,= co0s d cos 0,4 sin dsin ¢, cos I.
Let 3 be the distance between the planets, so that
O*=r*+r’—2rr cos y.
Q, Q, are the disturbing functions, defined by the equations

Q = mm ( TCOSX) Q_-m <8 7,CO8 ¥

TQ 5

and, when expressed in terms of the elements and ¢, are functions of

¢ ¢ 2 t
a,a,ee,l, j'ndH—e, j‘ndt-l—e—w, jnldt—l-el, j‘nldt-l—e,—-m,.
‘)0 0 0 0

When Q, Q, are considered on the one hand as expressed in this way, and on the
other, in their original form as functions of », r, 4, ¢, and I, we have, as applied to
either of them,

d d d d  d
=it aT=5 T
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P, p,» o are defined by the equations

p=m/pa(1—¢), p=mp/pa(1—¢), =p+p’+2pp,cosl.
1, 4, are the angles between the principal plane and the planes of the two orbits, and
are given functions of the elements a, @, ¢, e, I, by virtue of the equations
—po sins=pp sins=pp,sin I,
from which we have also
scosi=p-+p,cosl, ocoss=p+pcosl

(for the values of tan ;‘)—3 tan‘é, see art. 91. ).

“

w, is the angular velocity of the principal plane about the line of nodes;

», the angular velocity of the principal plane about a line in itself perpendicular to
the line of nodes ;

w, the angular velocity of the line of nodes estimated in the direction of the prin-
cipal plane.

Differential Equations of the Problem.
93. The nine intrinsic elements, as we may perhaps appropriately call them, namely,
a, ap €, e/: g, sp w, W, I’

are determined as functions of ¢ by the following system of nine simultaneous differ-
ential equations of the first order:

m;na’:?nﬁ%s—l, m,a _2na2‘§;
1 naV1—e*[dQ —dQ
oIS i
, V1—e(dQ
L )
mpe' = 2”a2dﬂ @—L —/1 —62) de
cos1 40 1dQ,
smI P dl+p, dl}
Mg, ———21201207'(2 n‘a”/l (]—\/l—e“)d
e,
my p, [cos 1 dﬂ, 1d0
Tsinl|p, dT ;MT}
—— na v/ 1—é e dQ_ my cosIa’Q 1 dQ,
w e de snl| p 4l ]_{'El_
,_nla,x/l—e:l dy  myp, [eosT dﬂ 140\
M= e de, sml| p, + pdl]
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. dQ 4O\ | dQ  dQ
pp,sin I-I'=P/{C°S I( +dw) s +dw}

+pfeos 1(FHH2) + 5+

94. The only parts of the preceding expressions of which the deduction is not per-
fectly obvious, are the terms involving I in the values of ¢, ¢, @', ». They are

obtained, as has been sufficiently explained from the expressions in art. 55, to which
B
are to be added the values of - &e. ((95.), art. 79.) 5 on putting »=0, @, dlsappeans

[} .
from the latter; and the values of w,, @,, coss, coss, tan '§, tan—zi are to be introduced

(equations (110.), (112.), (116.), (117.)). After some rather troublesome reductions,
the expressions above given will be found. '
In these equations it will be recollected that the mean longitude of m is represented

‘ : s . . dQ,
byyndt—}—e, and the differentiation with respect to @ in ——1s only performed so far
0

as a appears explicitly. If we wished that the mean longitude should be expressed
by nt-+¢, the only change in the equations would be that the differentiation with
respect to @ must be total; i.e. must extend to o as contained in n. A similar
remark applies of course to ¢,

In actual use it would be more convenient to introduce R, R, instead of Q,Q,; the
latter functions give a rather more symmetrical form to the equations, and are more
convenient in general investigations. (The relation between them here is merely
Q=mR, Q=mMR,; in another part of the paper the symbol Q was used for —mR
(art. 55.)).

95. If the equations of art. 93. were completely integrated, the in#rinsic motion
of the system would be completely determined; that is, we should know at any
instant the dimensions of the two orbits, the mutual inclination of their planes, the
position of their axes with respect to the line of nodes, the place of each planet in its
orbit, and (by (110.)) the inclination of each orbit to the principal plane.

The position of the system relatively to fixed space would then have to be sepa-
rately determined as follows :—

The three quantities w,, »;, », (see end of art. 92.), of which the values are ((112.),
(1 13.), (116.)) given by the equations

6'2 sin I.wo={(p+p, cos I) <d—%+3%l> +(pA+pcosI) <3‘é+3%,)}(9,—9)
w1=0—§lI(Q,—Q)

osinl.w,= <%+ cos I)%(—IZ+ (gl+ cos I>%{—21—’,

MDCCCLV. 3 A
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would be given functions of £. Then if we call
J the inclination of the principal plane to an arbitrary fixed plane;
Q the longitude of the line of intersection of these two planes, reckoned in the
fixed plane from a fixed line;
N the angle between this line of intersection and the line of nodes ;
we should have (as in art. 83. with a different notation)

Q'sin J=a, sin N+, cos N
N'=w,— cot J(«, sin N+, cos N)
and the integration of this system would give J, Q, N as functions of ¢, and so deter-
mine at any instant the position of the principal plane and of the line of nodes, rela-
tively to fixed space.

With respect to the motion of the principal plane, the following may be added.
It has already been shown (art. 88, 89.) that the line about which it is at any instant
turning, coincides with that in which it is intersected by the plane of the radii vectores ;
and the values of w,, », (see art. 88, putting »=0 in the expressions there given) may
be put in the form

J'=w,cos N—a, sin N
} (118.)

. o . .
o’w,=mm,sin I. (ﬁ—;;) (p cos dsin d~+p, sin d cos d)
. 7 r . .
6w, =mm, sin I<;;-—T—2) sin dsin 4,.

If the latter of these be multiplied by ¢, and then both sides of each squared, and the
results added (after putting for ¢® on the right its value p*-4-p’-42pp, cosI), we find,
observing that cos 4 cos d,4 sin dsin 0, cos I= cosy,

o’/ i+ ot=mm sin | (;é-—%) (p? sin® ,4p?sin? 0-+2pp, sin dsin 4, cos x)¥,

an expression which may be further transformed as follows. Let A, A, be the latitudes
of m,m, (with reference to the principal plane) ; then sin A=sin{sins, sinA =sin4,sins,;

o sin —osini .
L p=—"+—, we obtain

hence, since p—=-——, p=_""_
ence, P sinl’ 2 sin 1

— TEAYE . C 1
a\/wﬁ-{—w?:mm,(;;‘z—;—?) (sin® A4 sin’A,—2sin A sin A, cos x)*.

This gives the absolute angular velocity with which the principal plane is at any
instant changing its direction in space; it is evident that (if the supposition r,=r be
excluded) it can never vanish except when both planets are in the line of nodes. The
direction of the rotation is determined by the signs of », and ,.
96. The system of differential equations given in art. 93. affords an example of the
‘so-called “ elimination of the nodes” in the problem of three bodies. Jacosr, by a
very remarkable and ingenious transformation, has effected the elimination in a quite
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different manner*. The equations of art. 93. are merely transformations of the
original differential equations of the problem, without any integrations; they are
however in a form which might perhaps be used advantageously in certain cases for
the purposes of physical astronomy. Those of Jacosr are obtained by employing all
the four usual integrals of the problem, and are shown to include an additional inte-
gration. They have however the disadvantage of substituting the coordinates of two
fictitious bodies for those of the actual planets, and would probably be inconvenient
for ordinary practical use ; though in a theoretical point of view they seem to deserve
more attention than they have hitherto received. It would be wrong to take leave
of this celebrated problem without referring to another transformation by M. Ber-
TRAND -, which, as has been remarked by a recent writer in the same journal, effects
stz integrations, and therefore represents the furthest advance which has yet been
made towards a rigorous solution.

APPENDIX A.

When the method described in Theorem VII. (art. 49.) is applied to the solution
of a system of equations of the form (I.), of which » integrals, a, ... a,, satisfying
the conditions [a;, a;]=0, are given, the first step is to express the n-+1 partial dif-

. . dX dX .
ferential coefficients P &c., and —-; namely, the values of y,, ...y, and —Z in

terms of x,, ... 2,, a,, ... a, and ¢. The direct process is then to find X by integrating
the expression y,dr,+y.dr, 4 .. +y,dv,—Zdt, and afterwards to form the remaining

. . dX . . . S T
integral equations Z-=b,, &c.: when this process is adopted, the inferior limits in
1

the integrations are perfectly arbitrary ; in other words, we may add to X an arbitrary
function of a,, a,, ... a,, without altering any of the general properties of the final
system of integrals.

But it is generally much more convenient to perform the differentiations with
respect to a,, ... a, first, and integrate afterwards; thus we obtain the remaining
equations in the form

——y(dy‘d 1,4+ B, 4, dZa’t).

When this plan is followed, the limits are still arbitrary if it be only required that
the equations thus obtained shall be ¢rue; but if it be required that they shall form,
with the given integrals, a normal solution, it is necessary to take the limits in such a
manner that the functions equated to b,, b,, ... b, shall be the partial differential coet-
ficients with respect to a,, a,, ... a,, of one and the same jfunction; which will not
generally be the case unless care be taken that it should be so.

In practice, the expression for dX usually consists of several terms, of which each

* Comptes Rendus, 1842, part 2. p. 236, &c. 1 LrouviLLe’s Journal, 1852,
342
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contains one of the variables only. Suppose one of these terms is
o(x, ay, ay, ... a,)dz,

so that, so far as this term is concerned, we have
2
X:&@(w, a,, ay, ... a,)dx,
where A is an arbitrary function of a,, ... @,. Consequently

dX (% de dA
EE;_—'—:{; d—‘l:dot’—@(A, a, ... aﬂ)%:

and we see that we should not in general obtain the differential coefficients with

dg
67;2, &C.,

respect to a,, ... a, of one and the same function X, by merely integrating %P-,
1
with respect to x, from the same inferior limit A, chosen at hazard.
But it is evident that we shall attain this end if we adopt the following simple
rule :—
Integrate %;ga &c. with respect to x, taking the same inferior limit in each case,
1
nawely, either
(1) a value A of » which satisfies the equation ¢(, a,, ... @,)=0, or
(2) any determinate constant (i.e. not a function of a,, ... a,).

For example, in the problem of central forces (Part I., art. 28, &c.), we had (see art. 19.)

dX = —hdt+cdd+(2m(h+(r)) — kr==)*dr+ (B — * sec? d)
(where r, 0, & are the three variables).

The very troublesome process of differentiating X with respect to A, £ and ¢ after
first ﬁhding X by integrating the above expression, is avoided by the method adopted
in art. 29 ; namely, by differentiating first, and integrating afterwards. In the inte-
grations with respect to r, the inferior limit is one of the roots of the equation

2m(h4o(r)) —kr—*=0,

namely (in the case of elliptic motion), the perihelion distance; and in those with
respect to A, the inferior limit is 0; so that the rule above given is observed.

At the time of writing the article referred to, neither the rule itself, nor the neces-
sity of attending to the limits, had occurred to me; it was therefore, strictly speak-
ing, accidental that the final integrals were obtained in a normal form.

In treating the problem of rotation (Section IIl.), I perceived the necessity of cau-
tion as to the limits, if the former order of proceeding were adopted ; but preferred
avoiding the risk of error altogether, by performing the integrations first, so as to
obtain the actual expression for V. The final equations (R.), art. 44, might however
be obtained in a more simple way by differentiating firs¢; thus we should have (see

d_ &

equations (45.), (46.)), observing that 0%

» &c. (art. 44.), and putting
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(1— cos®i— cos®j+42 cos i cos j cos d— cos? §)I=Q,
dV
2k{~,b cos i@ cosj-+ e odé} t+47

dv cosjcosl—cosi , ) .
dCOSZ=k{¢+§Wd0}-“ . . . . . . . . . (1.)

dV  (C—A)iBcosjf Q
deos;—  2ACh ]j’b cos i+ cos) +§sm Oda}

cos i cos § — cos j
+| +§—~—m——~do}=ﬁ.

In order to get rid of the troublesome integration involved in the termygg—'—a do, we

may (1) eliminate this term between the first and last of these equations, and (2)
eliminate 4 between the first and second. We thus find the two following equations,

€08 4 cos § — cos C—A ; .
+j‘ Q sin § jdo—%— AC kCOSJ.(t—I—r) N (1)

cosicos f— co sin §di __ 2A acosz -
cos -+ iy L )+ (T =T 4=

which last, combined with the preceding, gives

sin 0df acos i+ fBcosy
Q- __A(t+«r)-~————k————~; R (119
and we may take (i.), (ii.) and (iii.) as expressing the solution of the problem.
[=c0s i— cosj cosf

snjsmd from which it is easy to find (observing the

conditions which determine the sign of Q)

Now we have cos

cosicosf— COS]
—dl="—a5x -dd, and similarly,
_cosjcos@—cosi .
—dJ= Qsinf do 5
we have moreover d@:sugde.

All the integrations may therefore now be performed immediately ; and we may
take for the inferior limit of 4 any value which satisfies the equation Q=0, or
(éos 0— cosicosj)’—sin*isin’j=0;
this is satisfied by =i, which evidently corresponds to I=0, J=0, ®=0, and it
is manifest that equations (i.), (ii.), (iii.) will thus become identical with equations
(R) of art. 44.
I do not regret however having introduced the 1athe1 prolix investigation of arts.

39 and 43, because it is interesting to know the actual value of V (equation (48.)),
which the method just given leaves undetermined.
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ArpreEnDIX B.

On the subject of the transformation of elements, the following additional remarks
will hardly be superfluous. Suppose Q is originally a function of the elements a, b, c,
&c. with ¢; and let «, 3, 9, &c. be other quantities connected with a, b, c, &c., by
equations such as

da=Ade+BdB+-Cdy+...+Kdt, . . . . . . . . (a)

where A, B, C, ... K are given functions of , 3, 9, .... ¢; or by equations such as
" de=Ada+Bdb+...4+Kdt, . . . . . . . . (a)
where A, &c. are given functions of a, b, ...., . In either case, if each of the equa-

tions be integrable per se, we may consider a, b, c, .... as functions of «, 3, ¥, ...., ¢;
and such equations as

iQ 40 . dO ‘ o
TEATABT L L (@)

are both significant and true.
But if the expressions on the right of the equations (a.) be no¢ differentials per se,

. . . aQ., ..
the equations (Q.) are either unmeaning or untrue. For the symbol —- implies one

of two things; either, that Q is expressed in terms of «, 3, ... ¢ without arbitrary
constants (i. e. that the transformation of Q can be actually effected without inte-
grating the differential equations of the problem), which is manifestly impossible,
unless (a.), &c. be integrable per se; or else, that the differential equations are to be
conceived to have been completely integrated, so that @, &, &c., and consequently
A, B, &c., are known as functions of t and arbitrary constants, whereby the right-
hand side of («.) becomes an explicit function of t (and arbitrary constants), so that
e, 3, &c. may by integration be expressed in the same way, and, by means of (a.),
a, b, &c. may be similarly expressed, and finally, by algebraical elimination, a, b, &c.
become functions of a, 3, &c., £, and arbitrary constants. On this supposition, ‘fi-%
has a meaning, but the equation (Q.) is unérue; for we must have

dQ _dQ da  dQ db
U da da T AT

and it is manifestly not true that ﬁ:A, &ec. in this case, because the equation

da=Ada+BdB+...+Kdt,

not being integrable per se, only subsists for those variations of «, 8, &c. which
actually take place during the instant d ; whereas the equation

da,  d d
m=£m+£m+m+§w

subsists for arbitrary variations of all the variables. This view of the subject entirely
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coincides, in substance, with that taken by JacoB1; but the above mode of stating it
may tend to make it clearer, and to call attention to a matter which, so far as I know,
is not so much as mentioned in any of the elementary works usually in the hands of
students of physical astronomy.

[ Addition to ArPENDIX B.]
Received March 1, 1855.

The remark made above, that the symbol ZZZQ' is unmeaning in the case considered,
o

is not of course intended to imply that a meaning may not be given to it; but then
such meaning is different from the ordinary signification of the symbol, which is a
partial derived function. '

The whole matter may be strikingly illustrated by a simple example.

Consider the movement of a rigid body about a fixed point. Adopting the nota-
tion of art. 40 (Part L.), we have

pdt=—-cos pdf— sin d sin pd-)
qdt= sin pd0— sin d cos pd-
rdt=dp-}+ cos dd-}.

Let «, 3, ¥ be three new variables, defined by the equations

oa::j'tpdt, B= tgdt, 9/:5:7'0” ;
0 0
so that de=pdt, &c. Then the above equations give
d0=— cos pde—+ sin ¢dB, dp=dy- cot d(sin pde-- cos ¢dB)
d-) = — cosec d(sin pda+ cos ¢df3).
Here «, 3, y are the sums of the elementary angles described about the axes in the
course of the motion ; and no one would maintain that ¢, ¢, are functions of «, 3, ¢,

for the values of the latter variables at any time do not determine the values of the
former. If therefore we choose to write such equations as

a_ e
T = COSQ, yz=sing, &c.,

j—f‘, gg, &ec. are not partial derived functions in the ordinary sense.

di . . . . . .
At most, Z:% is the derived function of that function of e« which 0 would become if 3

we must admit that

and y were maintained invariable, 7. e. if the motion were restricted to a rotation
. L : a2 d% o
about the A-axis. Again, if we admit such symbols as 7 Tag e must inter-
pret them as follows :

a2 d di  dcose

) cosg_ . dp
dfda—df de— " "df S Pgp
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but g%: cot d cos ¢, and therefore

d% .
e = cotdsinpcosg;

and in like manner we find the same value for ;75, so that in this particular case
as  d%

the condition Zadf = B is verified.

a% %
But if we take -—- dyia and -—- Tudy in the same way, we find t/zeformer = sin ¢ and the

latter _0 so that in this case the condition is not verified. The geometrical meaning
of this is obvious ; analytically it is merely an instance of a general fact, pointed out
by Jacosr; namely, that the effect of two successive pseudo-dgﬁérentiations with
respect ‘to two independent variables, is not generally independent of the order of
operations.

If V be the potential of another body, given in position, upon the body considered,
then V is a function of 4, ¢, +J, and

dV:wdo+ d¢d +d¢d¢

and if we substitute for df, dp, d-} their values in terms of dw, df3, dy, we obtain an
expression which we may call Ldae+MdB+Ndy, L, M, N being functions of 4, ¢, 4,
ASANAY
o’ de” dy
the attraction of the second body about the three axes. Here again no one would

» of which, as is well known, the mechanical meanmgs are the moments of

. . . . . . av
maintain that V is a function of «, 3, 7 and if, as is often done, we say EizL’ &e.,

the above remarks apply in all respects to these equations. »

I should have thought it superfluous to dwell so much on these points if it had not
appeared that writers on physical astronomy have in some instances either overlocked
the distinction between real and pseudo-differentiation, or at least have failed to point
it out to their readers. The only discussion of the subject which I have met with is
that given by Jacosi, in the correspondence referred to.

It may be added, that in general investigations, where symbols such as %, &e.
may be used without defining the nature of V, or the precise meaning of «, 38, &e.,
serious er’xprs,might be committed if it were assumed that the condition %=%

always subsisted.

ArpeEnpix C.

The theorems relating to the transformation of coordinates, given in Section VI.,
may be made more general, and in many cases more useful, as follows :—
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If «,, @,, ... @, be the coordinates employed in the first statement of any dynamical .
problem, the differential equations are comprehended in the formula

dW\' dW

[If there be any forces, such as those arising from a resisting medium, which do
not satisfy the natural conditions of integrability, then on the right-hand side of the
formula (D.), instead of 0 we shall have an expression such as =,(Xgx;); but such
terms are easily introduced and allowed for separately, and do not affect the follow-
ing investigation. I shall therefore here assume that they do not exist. |

In the above formula, W is a given function of @, v.. &py T,y ... &, which may also
explicitly contain ¢.

In Section VI. the only case contemplated was that in which a,, ... x, are inde-
pendent coordinates ; in which case the formula (D.) is equivalent to » separate equa-
tions, since dz,, &c. are wholly arbitrary and independent.

In practice, however, it is often more convenient to use, at first, a set of coordinates
more in number than the independent variables of the problem, and therefore subject
to equations of condition.

Let us assume then that the » coordinates 2, ... ¥, are subject to r equations of
condition,

L,=0, L,=0, ... L,=0,
where L, &c. may explicitly contain ¢, besides the n variables «,, &ec.
If we introduce the n conjugate variables y,, ... y, defined by the equations yi=%%7,

and take Z a function of x,, &c., y,, &c. (with or without ¢), defined by the equation
Z=— (W14 [5]ys o4 [2]0,

(the brackets indicating that x, &c. are expressed in terms of y,, &c.), then it follows
exactly as in art. 18 (Part I.), that the formula (D.) will be changed into the system
.

=

[In the most usual problems W is of the form T+ U, where T is homogeneous and
of the second degree in ,, &c., and U does not contain ), &c. at all. In this case
Z is only T—U expressed in terms of y,, &c., instead of x,, &c. But T is not neces-
sarily homogeneous ; in fact it is not so in problems relating to motion relative ¢o
the earth, as affected by the earth’s rotation.]

Let us now suppose that the system (E.) is to be transformed by the introduction
of the m independent coordinates &, %, ... £,, and of the new conjugate variables
s Ay -+« A3 Where m=n—r. And let it be required to investigate a theorem by

means of which the transformation may be effected without recurring to the original
Jormula (D.).

MDCCCLV. 3B

(E)
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The definitions of the new coordinates £, &c. will furnish m equations (which may
explicitly contain #) by means of which £, ... £, may be expressed as functions of
2, ... &, (with or without ¢) ; and conversely, by means of these m equations, together
with the » equations of condition L,=0, &c., the n variables x,, x,, ... x, may be
expressed as functions of &, ... &,, with or withoutz. When x,, ... x, are so expressed,
let them be represented by (#,), ... (z,). We shall bave then

;:¢%+%”g’,+...+%g’m, @)
so that x}, &e. are expressible (and in only one way) as functions of &, &c., &, &ec.

If then the formula (D.) be transformed by expressing ,, &c., a4}, &c. in this manuner,
it becomes, as is well known,

(8-

where (W) represents the result of transforming W as above; and since 3%, &c. are
now independent, this formula breaks up into the m separate equations

dW)\' dW
dAW

| Moreover, if we now define », by the equation ~@g=ni, and put

where (&), &c. are expressed in terms of 7, &c., we know already (art. 18.) that the

system (F.) becomes
aw av

=g T
Now let P be a function of the m new variables £, ... §,, and of the n old variables
Yy« Yo (With or without ¢), defined by the equation

P=(2)y,~+(2)ys+ .- +(2.) Y-

. dW . . ) ,
Since ”iz—ﬁl?_ » and since (W) contains £, &c., only through ), &c., we have, ob-
i

(G.)

. aw
serving that ——=y,,

dz, dz, dz, .
’7i=ylzii +y2'd-£, +... +,”/nd—sl ’

. dz, d(a;
but from the equation (2'.) we have (1_?2 il?-)’

consequently =Y, g;:)+ Ys %)-I- Y. Eig)

dp

TE Thus #, may be defined by the equation

an expression evidently equivalent to

dP :
Eg;=”i. . . . - . . . . . . LI . o (ﬂ.)
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without recurring to the formula (D.). And since each equation of condition gives,

. cegs dZ )
if differentiated totally with respect to ¢, with the substitution of o for x;, an equa-

tion such as
dL  dL dZ dL dZ
O=d V@ gt FTomy - - - - - 1)

.

the m equations (».) with the r equations L (in which last «,, &c. must be expressed,
after the differentiation, in terms of £ &c.), give n equations by means of which
Y1 -+« Y, nay be expressed in terms of &, &c., 7, &c., and can be so expressed only in

one way.
Lastly, the value of ¥ (see equations (G.)), may be obtained as follows :—

Since Y=—W)+E)n+... 4+ &)

and Z=—[W]+[x]y+ ..+ 2] Y0

and (W) is only [W] differently expressed, we have, without reference to modes of
expression,
Y —Z=3,(¢n)—=(2y,)-

On the other hand, since P can contain ¢ explicitly only through (z,), &c., we have

dP_ d(z;)
i i<yi7>,

. dP.,
and also Ei(xzyi)=25(yi@%>+2i<£§i> 5
-, aP .
hence, observing that =" We obtain

, , ap
Ei(%ini) - Ei(mi_yi) ==’

dpP

and therefore, finally, VY=Z——

dpP . . . . .
80 that Z—— must become identical with ¥, when expressed entirely in terms of

the new variables.

These results may be stated in the form of the following theorem. The system (E.)
is transformed into the system (G.) by the following substitutions :—

(1) @, ...z, are expressed in terms of &, ... £, by means of the m equations which
define the latter variables, together with the n—m equations of condition

L,=o0, ... L,=0 (r=n—m).
(2) m, ... 7, are defined by the m equations %:ni; where the modulus of trans-

formation P is given by the equation

P= (3?;).% + (mz)yz+ et (mn).ym
(2,), &c. being expressed in terms of £, &c., so that P is explicitly a function of £, ...£,,
Yy« Yy With or without 2.
282
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(3) ¥ is defined by the equation ¥ =2— , in which (after the explicit differentia-
tion of P with respect to ?), x,, &c., v, &c. are to be expressed in terms of the new

variables. y,, &c. are thus expressible by the help of the m equations %;1;=77; and the

dL dZ) —o0.

. dL
n—m equations 71,‘——'_2"(%—,- &)=

If (2,), &c., do not contain ¢ explicitly, then — ab — =0, and ¥ is obtained merely by

expressing Z in terms of the new variables.

It may be observed that the whole of the above reasoning would apply to the case
in which the new variables £, ... £, are more in number than the independent vari-

. . . . P
ables of the problem (or m>n—r), with this exception ; that the m equations ,%277»

together with the » equations obtained by differentiating the equations of condition
totally with respect to ¢, would be more than sufficient to expressy,, ... y, in terms of
the new variables ; consequently y,, &c. might be so expressed in different ways, and
therefore, although the value of ¥ obtained by the above rule would certainly be the
same as that obtained by recurring to the original formula (D.), the form of ¥ might
be different, and therefore the resulting formula erroneous.

There must doubtless exist some rule for choosing n—m combinations of the
equations of condition in such a way as to lead to the correct forms of v, ...y, as
functions of the new variables; but I have not at present attempted to investigate it,
and perhaps it would be hardly worth while. The theorem in the case in which the
new coordinates are independent, may, I believe, be practically useful.

ERRATA IN PART 1.

Art. 1. equation (4.), for de read dz;.

Art. 10. In paragraph preceding equation (26.) omit the words * not containing ¢ explicitly.”

Art. 18, equation (B), for y; read Y;e

Art. 19. equation (29.), for 4; read b;.

Art. 24. second line after equation (L.), for ““such as &, k" read “ such as f, ¢9.”

Art. 30. The expressions equated to 4, &, ¢, and the three terms in the left-hand column of the table of
elements, should each be multiplied by .

Art. 42. near the end, for “according as © is between o and «, or not” read * according as © is between
« and 27, or between o and 7.”



